
x1 y1

x2 y2

x3 y3

x4 y4

x5 y5

Figure 7.1 A bipartite graph.

Chapter 7

Network Flow

In this chapter, we focus on a rich set of algorithmic problems that grow, in a

sense, out of one of the original problems we formulated at the beginning of

the course: Bipartite Matching.

Recall the set-up of the Bipartite Matching Problem. A bipartite graph

G = (V , E) is an undirected graph whose node set can be partitioned as

V = X ∪ Y, with the property that every edge e ∈ E has one end in X and

the other end in Y. We often draw bipartite graphs as in Figure 7.1, with the

nodes in X in a column on the left, the nodes in Y in a column on the right,

and each edge crossing from the left column to the right column.

Now, we’ve already seen the notion of a matching at several points in

the course: We’ve used the term to describe collections of pairs over a set,

with the property that no element of the set appears in more than one pair.

(Think of men (X) matched to women (Y) in the Stable Matching Problem,

or characters in the Sequence Alignment Problem.) In the case of a graph, the

edges constitute pairs of nodes, and we consequently say that a matching in

a graph G = (V , E) is a set of edges M ⊆ E with the property that each node

appears in at most one edge of M. A set of edges M is a perfect matching if

every node appears in exactly one edge of M.

Matchings in bipartite graphs can model situations in which objects are

being assigned to other objects. We have seen a number of such situations in

our earlier discussions of graphs and bipartite graphs. One natural example

arises when the nodes in X represent jobs, the nodes in Y represent machines,

and an edge (xi, yj) indicates that machine yj is capable of processing job xi. A

perfect matching is, then, a way of assigning each job to a machine that can

process it, with the property that each machine is assigned exactly one job.

Bipartite graphs can represent many other relations that arise between two

338 Chapter 7 Network Flow

distinct sets of objects, such as the relation between customers and stores; or

houses and nearby fire stations; and so forth.

One of the oldest problems in combinatorial algorithms is that of deter-

mining the size of the largest matching in a bipartite graph G. (As a special

case, note that G has a perfect matching if and only if |X| = |Y| and it has a

matching of size |X|.) This problem turns out to be solvable by an algorithm

that runs in polynomial time, but the development of this algorithm needs

ideas fundamentally different from the techniques that we’ve seen so far.

Rather than developing the algorithm directly, we begin by formulating a

general class of problems—network flow problems—that includes the Bipartite

Matching Problem as a special case. We then develop a polynomial-time

algorithm for a general problem, the Maximum-Flow Problem, and show how

this provides an efficient algorithm for Bipartite Matching as well. While the

initial motivation for network flow problems comes from the issue of traffic in

a network, we will see that they have applications in a surprisingly diverse set

of areas and lead to efficient algorithms not just for Bipartite Matching, but

for a host of other problems as well.

7.1 The Maximum-Flow Problem and the
Ford-Fulkerson Algorithm

The Problem

One often uses graphs to model transportation networks—networks whose

edges carry some sort of traffic and whose nodes act as “switches” passing

traffic between different edges. Consider, for example, a highway system in

which the edges are highways and the nodes are interchanges; or a computer

network in which the edges are links that can carry packets and the nodes are

switches; or a fluid network in which edges are pipes that carry liquid, and

the nodes are junctures where pipes are plugged together. Network models

of this type have several ingredients: capacities on the edges, indicating how

much they can carry; source nodes in the graph, which generate traffic; sink

(or destination) nodes in the graph, which can “absorb” traffic as it arrives;

and finally, the traffic itself, which is transmitted across the edges.

Flow Networks We’ll be considering graphs of this form, and we refer to the

traffic as flow—an abstract entity that is generated at source nodes, transmitted

across edges, and absorbed at sink nodes. Formally, we’ll say that a flow

network is a directed graph G = (V , E) with the following features.

. Associated with each edge e is a capacity, which is a nonnegative number

that we denote ce.

7.1 The Maximum-Flow Problem and the Ford-Fulkerson Algorithm 339

20 10

30

10 20

ts

u

v

Figure 7.2 A flow network,

with source s and sink t. The

numbers next to the edges

are the capacities.

. There is a single source node s ∈ V.

. There is a single sink node t ∈ V.

Nodes other than s and t will be called internal nodes.

We will make two assumptions about the flow networks we deal with: first,

that no edge enters the source s and no edge leaves the sink t; second, that

there is at least one edge incident to each node; and third, that all capacities

are integers. These assumptions make things cleaner to think about, and while

they eliminate a few pathologies, they preserve essentially all the issues we

want to think about.

Figure 7.2 illustrates a flow network with four nodes and five edges, and

capacity values given next to each edge.

Defining Flow Next we define what it means for our network to carry traffic,

or flow. We say that an s-t flow is a function f that maps each edge e to a

nonnegative real number, f : E → R+; the value f (e) intuitively represents the

amount of flow carried by edge e. A flow f must satisfy the following two

properties.1

(i) (Capacity conditions) For each e ∈ E, we have 0 ≤ f (e) ≤ ce.

(ii) (Conservation conditions) For each node v other than s and t, we have
∑

e into v

f (e) =
∑

e out of v

f (e).

Here
∑

e into v f (e) sums the flow value f (e) over all edges entering node v,

while
∑

e out of v f (e) is the sum of flow values over all edges leaving node v.

Thus the flow on an edge cannot exceed the capacity of the edge. For

every node other than the source and the sink, the amount of flow entering

must equal the amount of flow leaving. The source has no entering edges (by

our assumption), but it is allowed to have flow going out; in other words, it

can generate flow. Symmetrically, the sink is allowed to have flow coming in,

even though it has no edges leaving it. The value of a flow f , denoted ν(f), is

defined to be the amount of flow generated at the source:

ν(f) =
∑

e out of s

f (e).

To make the notation more compact, we define f out(v) =
∑

e out of v f (e)

and f in(v) =
∑

e into v f (e). We can extend this to sets of vertices; if S ⊆ V, we

1 Our notion of flow models traffic as it goes through the network at a steady rate. We have a single

variable f (e) to denote the amount of flow on edge e. We do not model bursty traffic, where the flow

fluctuates over time.

340 Chapter 7 Network Flow

define f out(S) =
∑

e out of S f (e) and f in(S) =
∑

e into S f (e). In this terminology,

the conservation condition for nodes v �= s, t becomes f in(v) = f out(v); and we

can write ν(f) = f out(s).

The Maximum-Flow Problem Given a flow network, a natural goal is to

arrange the traffic so as to make as efficient use as possible of the available

capacity. Thus the basic algorithmic problem we will consider is the following:

Given a flow network, find a flow of maximum possible value.

As we think about designing algorithms for this problem, it’s useful to

consider how the structure of the flow network places upper bounds on the

maximum value of an s-t flow. Here is a basic “obstacle” to the existence of

large flows: Suppose we divide the nodes of the graph into two sets, A and

B, so that s ∈ A and t ∈ B. Then, intuitively, any flow that goes from s to t

must cross from A into B at some point, and thereby use up some of the edge

capacity from A to B. This suggests that each such “cut” of the graph puts a

bound on the maximum possible flow value. The maximum-flow algorithm

that we develop here will be intertwined with a proof that the maximum-flow

value equals the minimum capacity of any such division, called the minimum

cut. As a bonus, our algorithm will also compute the minimum cut. We will

see that the problem of finding cuts of minimum capacity in a flow network

turns out to be as valuable, from the point of view of applications, as that of

finding a maximum flow.

Designing the Algorithm

Suppose we wanted to find a maximum flow in a network. How should we

go about doing this? It takes some testing out to decide that an approach

such as dynamic programming doesn’t seem to work—at least, there is no

algorithm known for the Maximum-Flow Problem that could really be viewed

as naturally belonging to the dynamic programming paradigm. In the absence

of other ideas, we could go back and think about simple greedy approaches,

to see where they break down.

Suppose we start with zero flow: f (e) = 0 for all e. Clearly this respects the

capacity and conservation conditions; the problem is that its value is 0. We

now try to increase the value of f by “pushing” flow along a path from s to t,

up to the limits imposed by the edge capacities. Thus, in Figure 7.3, we might

choose the path consisting of the edges {(s, u), (u, v), (v, t)} and increase the

flow on each of these edges to 20, and leave f (e) = 0 for the other two. In this

way, we still respect the capacity conditions—since we only set the flow as

high as the edge capacities would allow—and the conservation conditions—

since when we increase flow on an edge entering an internal node, we also

increase it on an edge leaving the node. Now, the value of our flow is 20, and

we can ask: Is this the maximum possible for the graph in the figure? If we

7.1 The Maximum-Flow Problem and the Ford-Fulkerson Algorithm 341

20 10

30

(a)

10 20

u

v

ts

20 10

30

10 20

u

v

ts

20 10

30

10 20

u

v

ts

(b) (c)

Figure 7.3 (a) The network of Figure 7.2. (b) Pushing 20 units of flow along the path

s, u, v, t. (c) The new kind of augmenting path using the edge (u, v) backward.

think about it, we see that the answer is no, since it is possible to construct

a flow of value 30. The problem is that we’re now stuck—there is no s-t path

on which we can directly push flow without exceeding some capacity—and

yet we do not have a maximum flow. What we need is a more general way of

pushing flow from s to t, so that in a situation such as this, we have a way to

increase the value of the current flow.

Essentially, we’d like to perform the following operation denoted by a

dotted line in Figure 7.3(c). We push 10 units of flow along (s, v); this now

results in too much flow coming into v. So we “undo” 10 units of flow on

(u, v); this restores the conservation condition at v but results in too little

flow leaving u. So, finally, we push 10 units of flow along (u, t), restoring the

conservation condition at u. We now have a valid flow, and its value is 30. See

Figure 7.3, where the dark edges are carrying flow before the operation, and

the dashed edges form the new kind of augmentation.

This is a more general way of pushing flow: We can push forward on

edges with leftover capacity, and we can push backward on edges that are

already carrying flow, to divert it in a different direction. We now define

the residual graph, which provides a systematic way to search for forward-

backward operations such as this.

The Residual Graph Given a flow network G, and a flow f on G, we define

the residual graph Gf of G with respect to f as follows. (See Figure 7.4 for the

residual graph of the flow on Figure 7.3 after pushing 20 units of flow along

the path s, u, v, t.)

. The node set of Gf is the same as that of G.

. For each edge e = (u, v) of G on which f (e) < ce, there are ce − f (e)

“leftover” units of capacity on which we could try pushing flow forward.

342 Chapter 7 Network Flow

20 10

30

10 20

u

v

ts

20 10

20 10

10 20

v

ts

20 10

10 20

10 20

ts

u

v

u

(a) (b) (c)

Figure 7.4 (a) The graph G with the path s, u, v, t used to push the first 20 units of flow.

(b) The residual graph of the resulting flow f , with the residual capacity next to each

edge. The dotted line is the new augmenting path. (c) The residual graph after pushing

an additional 10 units of flow along the new augmenting path s, v, u, t.

So we include the edge e = (u, v) in Gf , with a capacity of ce − f (e). We

will call edges included this way forward edges.

. For each edge e = (u, v) of G on which f (e) > 0, there are f (e) units of

flow that we can “undo” if we want to, by pushing flow backward. So

we include the edge e′ = (v, u) in Gf , with a capacity of f (e). Note that

e′ has the same ends as e, but its direction is reversed; we will call edges

included this way backward edges.

This completes the definition of the residual graph Gf . Note that each edge e

in G can give rise to one or two edges in Gf : If 0 < f (e) < ce it results in both

a forward edge and a backward edge being included in Gf . Thus Gf has at

most twice as many edges as G. We will sometimes refer to the capacity of an

edge in the residual graph as a residual capacity, to help distinguish it from

the capacity of the corresponding edge in the original flow network G.

Augmenting Paths in a Residual Graph Now we want to make precise the

way in which we push flow from s to t in Gf . Let P be a simple s-t path in Gf—

that is, P does not visit any node more than once. We define bottleneck(P , f)

to be the minimum residual capacity of any edge on P, with respect to the

flow f . We now define the following operation augment(f , P), which yields a

new flow f ′ in G.

augment(f , P)

Let b = bottleneck(P , f)

For each edge (u, v) ∈ P

If e = (u, v) is a forward edge then

increase f (e) in G by b

7.1 The Maximum-Flow Problem and the Ford-Fulkerson Algorithm 343

Else ((u, v) is a backward edge, and let e = (v, u))

decrease f (e) in G by b

Endif

Endfor

Return(f)

It was purely to be able to perform this operation that we defined the residual

graph; to reflect the importance of augment, one often refers to any s-t path

in the residual graph as an augmenting path.

The result of augment(f , P) is a new flow f ′ in G, obtained by increasing

and decreasing the flow values on edges of P. Let us first verify that f ′ is indeed

a flow.

(7.1) f ′ is a flow in G.

Proof. We must verify the capacity and conservation conditions.

Since f ′ differs from f only on edges of P, we need to check the capacity

conditions only on these edges. Thus, let (u, v) be an edge of P. Informally,

the capacity condition continues to hold because if e = (u, v) is a forward

edge, we specifically avoided increasing the flow on e above ce; and if (u, v)

is a backward edge arising from edge e = (v, u) ∈ E, we specifically avoided

decreasing the flow on e below 0. More concretely, note that bottleneck(P , f)

is no larger than the residual capacity of (u, v). If e = (u, v) is a forward edge,

then its residual capacity is ce − f (e); thus we have

0 ≤ f (e) ≤ f ′(e) = f (e) + bottleneck(P , f) ≤ f (e) + (ce − f (e)) = ce ,

so the capacity condition holds. If (u, v) is a backward edge arising from edge

e = (v, u) ∈ E, then its residual capacity is f (e), so we have

ce ≥ f (e) ≥ f ′(e) = f (e) − bottleneck(P , f) ≥ f (e) − f (e) = 0,

and again the capacity condition holds.

We need to check the conservation condition at each internal node that

lies on the path P. Let v be such a node; we can verify that the change in

the amount of flow entering v is the same as the change in the amount of

flow exiting v; since f satisfied the conservation condition at v, so must f ′.

Technically, there are four cases to check, depending on whether the edge of

P that enters v is a forward or backward edge, and whether the edge of P that

exits v is a forward or backward edge. However, each of these cases is easily

worked out, and we leave them to the reader.

344 Chapter 7 Network Flow

This augmentation operation captures the type of forward and backward

pushing of flow that we discussed earlier. Let’s now consider the following

algorithm to compute an s-t flow in G.

Max-Flow

Initially f (e) = 0 for all e in G

While there is an s-t path in the residual graph Gf

Let P be a simple s-t path in Gf

f ′ = augment(f , P)

Update f to be f ′

Update the residual graph Gf to be Gf ′

Endwhile

Return f

We’ll call this the Ford-Fulkerson Algorithm, after the two researchers who

developed it in 1956. See Figure 7.4 for a run of the algorithm. The Ford-

Fulkerson Algorithm is really quite simple. What is not at all clear is whether

its central While loop terminates, and whether the flow returned is a maximum

flow. The answers to both of these questions turn out to be fairly subtle.

Analyzing the Algorithm: Termination and Running Time

First we consider some properties that the algorithm maintains by induction

on the number of iterations of the While loop, relying on our assumption that

all capacities are integers.

(7.2) At every intermediate stage of the Ford-Fulkerson Algorithm, the flow

values {f (e)} and the residual capacities in Gf are integers.

Proof. The statement is clearly true before any iterations of the While loop.

Now suppose it is true after j iterations. Then, since all residual capacities in

Gf are integers, the value bottleneck(P , f) for the augmenting path found in

iteration j + 1 will be an integer. Thus the flow f ′ will have integer values, and

hence so will the capacities of the new residual graph.

We can use this property to prove that the Ford-Fulkerson Algorithm

terminates. As at previous points in the book we will look for a measure of

progress that will imply termination.

First we show that the flow value strictly increases when we apply an

augmentation.

(7.3) Let f be a flow in G, and let P be a simple s-t path in Gf . Then

ν(f ′) = ν(f) + bottleneck(P , f); and since bottleneck(P , f) > 0, we have

ν(f ′) > ν(f).

7.1 The Maximum-Flow Problem and the Ford-Fulkerson Algorithm 345

Proof. The first edge e of P must be an edge out of s in the residual graph

Gf ; and since the path is simple, it does not visit s again. Since G has no

edges entering s, the edge e must be a forward edge. We increase the flow

on this edge by bottleneck(P , f), and we do not change the flow on any

other edge incident to s. Therefore the value of f ′ exceeds the value of f by

bottleneck(P , f).

We need one more observation to prove termination: We need to be able

to bound the maximum possible flow value. Here’s one upper bound: If all the

edges out of s could be completely saturated with flow, the value of the flow

would be
∑

e out of s ce. Let C denote this sum. Thus we have ν(f) ≤ C for all

s-t flows f . (C may be a huge overestimate of the maximum value of a flow

in G, but it’s handy for us as a finite, simply stated bound.) Using statement

(7.3), we can now prove termination.

(7.4) Suppose, as above, that all capacities in the flow network G are integers.

Then the Ford-Fulkerson Algorithm terminates in at most C iterations of the

While loop.

Proof. We noted above that no flow in G can have value greater than C, due to

the capacity condition on the edges leaving s. Now, by (7.3), the value of the

flow maintained by the Ford-Fulkerson Algorithm increases in each iteration;

so by (7.2), it increases by at least 1 in each iteration. Since it starts with the

value 0, and cannot go higher than C, the While loop in the Ford-Fulkerson

Algorithm can run for at most C iterations.

Next we consider the running time of the Ford-Fulkerson Algorithm. Let n

denote the number of nodes in G, and m denote the number of edges in G. We

have assumed that all nodes have at least one incident edge, hence m ≥ n/2,

and so we can use O(m + n) = O(m) to simplify the bounds.

(7.5) Suppose, as above, that all capacities in the flow network G are integers.

Then the Ford-Fulkerson Algorithm can be implemented to run in O(mC) time.

Proof. We know from (7.4) that the algorithm terminates in at most C itera-

tions of the While loop. We therefore consider the amount of work involved

in one iteration when the current flow is f .

The residual graph Gf has at most 2m edges, since each edge of G gives

rise to at most two edges in the residual graph. We will maintain Gf using an

adjacency list representation; we will have two linked lists for each node v,

one containing the edges entering v, and one containing the edges leaving v.

To find an s-t path in Gf , we can use breadth-first search or depth-first search,

346 Chapter 7 Network Flow

which run in O(m + n) time; by our assumption that m ≥ n/2, O(m + n) is the

same as O(m). The procedure augment(f , P) takes time O(n), as the path P

has at most n − 1 edges. Given the new flow f ′, we can build the new residual

graph in O(m) time: For each edge e of G, we construct the correct forward

and backward edges in Gf ′.

A somewhat more efficient version of the algorithm would maintain the

linked lists of edges in the residual graph Gf as part of the augment procedure

that changes the flow f via augmentation.

7.2 Maximum Flows and Minimum Cuts in a
Network

We now continue with the analysis of the Ford-Fulkerson Algorithm, an activity

that will occupy this whole section. In the process, we will not only learn a

lot about the algorithm, but also find that analyzing the algorithm provides us

with considerable insight into the Maximum-Flow Problem itself.

Analyzing the Algorithm: Flows and Cuts

Our next goal is to show that the flow that is returned by the Ford-Fulkerson

Algorithm has the maximum possible value of any flow in G. To make progress

toward this goal, we return to an issue that we raised in Section 7.1: the way in

which the structure of the flow network places upper bounds on the maximum

value of an s-t flow. We have already seen one upper bound: the value ν(f) of

any s-t-flow f is at most C =
∑

e out of s ce. Sometimes this bound is useful, but

sometimes it is very weak. We now use the notion of a cut to develop a much

more general means of placing upper bounds on the maximum-flow value.

Consider dividing the nodes of the graph into two sets, A and B, so that

s ∈ A and t ∈ B. As in our discussion in Section 7.1, any such division places

an upper bound on the maximum possible flow value, since all the flow must

cross from A to B somewhere. Formally, we say that an s-t cut is a partition

(A, B) of the vertex set V, so that s ∈ A and t ∈ B. The capacity of a cut (A, B),

which we will denote c(A, B), is simply the sum of the capacities of all edges

out of A: c(A, B) =
∑

e out of A ce.

Cuts turn out to provide very natural upper bounds on the values of flows,

as expressed by our intuition above. We make this precise via a sequence of

facts.

(7.6) Let f be any s-t flow, and (A, B) any s-t cut. Then ν(f) = f out(A) −

f in(A).

7.2 Maximum Flows and Minimum Cuts in a Network 347

This statement is actually much stronger than a simple upper bound. It

says that by watching the amount of flow f sends across a cut, we can exactly

measure the flow value: It is the total amount that leaves A, minus the amount

that “swirls back” into A. This makes sense intuitively, although the proof

requires a little manipulation of sums.

Proof. By definition ν(f) = f out(s). By assumption we have f in(s) = 0, as the

source s has no entering edges, so we can write ν(f) = f out(s) − f in(s). Since

every node v in A other than s is internal, we know that f out(v) − f in(v) = 0

for all such nodes. Thus

ν(f) =
∑

v∈A

(f out(v) − f in(v)),

since the only term in this sum that is nonzero is the one in which v is set to s.

Let’s try to rewrite the sum on the right as follows. If an edge e has both

ends in A, then f (e) appears once in the sum with a “+” and once with a “−”,

and hence these two terms cancel out. If e has only its tail in A, then f (e)

appears just once in the sum, with a “+”. If e has only its head in A, then f (e)

also appears just once in the sum, with a “−”. Finally, if e has neither end in

A, then f (e) doesn’t appear in the sum at all. In view of this, we have
∑

v∈A

f out(v) − f in(v) =
∑

e out of A

f (e) −
∑

e into A

f (e) = f out(A) − f in(A).

Putting together these two equations, we have the statement of (7.6).

If A = {s}, then f out(A) = f out(s), and f in(A) = 0 as there are no edges

entering the source by assumption. So the statement for this set A = {s} is

exactly the definition of the flow value ν(f).

Note that if (A, B) is a cut, then the edges into B are precisely the edges

out of A. Similarly, the edges out of B are precisely the edges into A. Thus we

have f out(A) = f in(B) and f in(A) = f out(B), just by comparing the definitions

for these two expressions. So we can rephrase (7.6) in the following way.

(7.7) Let f be any s-t flow, and (A, B) any s-t cut. Then ν(f) = f in(B) − f out(B).

If we set A = V − {t} and B = {t} in (7.7), we have ν(f) = f in(B) − f out(B) =

f in(t) − f out(t). By our assumption the sink t has no leaving edges, so we have

f out(t) = 0. This says that we could have originally defined the value of a flow

equally well in terms of the sink t: It is f in(t), the amount of flow arriving at

the sink.

A very useful consequence of (7.6) is the following upper bound.

(7.8) Let f be any s-t flow, and (A, B) any s-t cut. Then ν(f) ≤ c(A, B).

348 Chapter 7 Network Flow

Proof.
ν(f) = f out(A) − f in(A)

≤ f out(A)

=
∑

e out of A

f (e)

≤
∑

e out of A

ce

= c(A, B).

Here the first line is simply (7.6); we pass from the first to the second since

f in(A) ≥ 0, and we pass from the third to the fourth by applying the capacity

conditions to each term of the sum.

In a sense, (7.8) looks weaker than (7.6), since it is only an inequality

rather than an equality. However, it will be extremely useful for us, since its

right-hand side is independent of any particular flow f . What (7.8) says is that

the value of every flow is upper-bounded by the capacity of every cut. In other

words, if we exhibit any s-t cut in G of some value c∗, we know immediately by

(7.8) that there cannot be an s-t flow in G of value greater than c∗. Conversely,

if we exhibit any s-t flow in G of some value ν∗, we know immediately by (7.8)

that there cannot be an s-t cut in G of value less than ν∗.

Analyzing the Algorithm: Max-Flow Equals Min-Cut

Let f denote the flow that is returned by the Ford-Fulkerson Algorithm. We

want to show that f has the maximum possible value of any flow in G, and

we do this by the method discussed above: We exhibit an s-t cut (A∗, B∗) for

which ν(f) = c(A∗, B∗). This immediately establishes that f has the maximum

value of any flow, and that (A∗, B∗) has the minimum capacity of any s-t cut.

The Ford-Fulkerson Algorithm terminates when the flow f has no s-t path

in the residual graph Gf . This turns out to be the only property needed for

proving its maximality.

(7.9) If f is an s-t-flow such that there is no s-t path in the residual graph Gf ,

then there is an s-t cut (A∗, B∗) in G for which ν(f) = c(A∗, B∗). Consequently,

f has the maximum value of any flow in G, and (A∗, B∗) has the minimum

capacity of any s-t cut in G.

Proof. The statement claims the existence of a cut satisfying a certain desirable

property; thus we must now identify such a cut. To this end, let A∗ denote the

set of all nodes v in G for which there is an s-v path in Gf . Let B∗ denote the

set of all other nodes: B∗ = V − A∗.

7.2 Maximum Flows and Minimum Cuts in a Network 349

s

u

u�

v

A* B*

Residual graph

t

v�

(u, v) is saturated
with flow.

(u�, v�) carries
no flow.

Figure 7.5 The (A∗, B∗) cut in the proof of (7.9).

First we establish that (A∗, B∗) is indeed an s-t cut. It is clearly a partition

of V. The source s belongs to A∗ since there is always a path from s to s.

Moreover, t �∈ A∗ by the assumption that there is no s-t path in the residual

graph; hence t ∈ B∗ as desired.

Next, suppose that e = (u, v) is an edge in G for which u ∈ A∗ and v ∈ B∗, as

shown in Figure 7.5. We claim that f (e) = ce. For if not, e would be a forward

edge in the residual graph Gf , and since u ∈ A∗, there is an s-u path in Gf ;

appending e to this path, we would obtain an s-v path in Gf , contradicting our

assumption that v ∈ B∗.

Now suppose that e′ = (u′, v′) is an edge in G for which u′ ∈ B∗ and v′ ∈ A∗.

We claim that f (e′) = 0. For if not, e′ would give rise to a backward edge

e′′ = (v′, u′) in the residual graph Gf , and since v′ ∈ A∗, there is an s-v′ path in

Gf ; appending e′′ to this path, we would obtain an s-u′ path in Gf , contradicting

our assumption that u′ ∈ B∗.

So all edges out of A∗ are completely saturated with flow, while all edges

into A∗ are completely unused. We can now use (7.6) to reach the desired

conclusion:

ν(f) = f out(A∗) − f in(A∗)

=
∑

e out of A∗

f (e) −
∑

e into A∗

f (e)

=
∑

e out of A∗

ce − 0

= c(A∗, B∗).

350 Chapter 7 Network Flow

Note how, in retrospect, we can see why the two types of residual edges—

forward and backward—are crucial in analyzing the two terms in the expres-

sion from (7.6).

Given that the Ford-Fulkerson Algorithm terminates when there is no s-t

in the residual graph, (7.6) immediately implies its optimality.

(7.10) The flow f returned by the Ford-Fulkerson Algorithm is a maximum

flow.

We also observe that our algorithm can easily be extended to compute a

minimum s-t cut (A∗, B∗), as follows.

(7.11) Given a flow f of maximum value, we can compute an s-t cut of

minimum capacity in O(m) time.

Proof. We simply follow the construction in the proof of (7.9). We construct

the residual graph Gf , and perform breadth-first search or depth-first search to

determine the set A∗ of all nodes that s can reach. We then define B∗ = V − A∗,

and return the cut (A∗, B∗).

Note that there can be many minimum-capacity cuts in a graph G; the

procedure in the proof of (7.11) is simply finding a particular one of these

cuts, starting from a maximum flow f .

As a bonus, we have obtained the following striking fact through the

analysis of the algorithm.

(7.12) In every flow network, there is a flow f and a cut (A, B) so that

ν(f) = c(A, B).

The point is that f in (7.12) must be a maximum s-t flow; for if there were

a flow f ′ of greater value, the value of f ′ would exceed the capacity of (A, B),

and this would contradict (7.8). Similarly, it follows that (A, B) in (7.12) is

a minimum cut—no other cut can have smaller capacity—for if there were a

cut (A′, B′) of smaller capacity, it would be less than the value of f , and this

again would contradict (7.8). Due to these implications, (7.12) is often called

the Max-Flow Min-Cut Theorem, and is phrased as follows.

(7.13) In every flow network, the maximum value of an s-t flow is equal to

the minimum capacity of an s-t cut.

7.2 Maximum Flows and Minimum Cuts in a Network 351

Further Analysis: Integer-Valued Flows

Among the many corollaries emerging from our analysis of the Ford-Fulkerson

Algorithm, here is another extremely important one. By (7.2), we maintain an

integer-valued flow at all times, and by (7.9), we conclude with a maximum

flow. Thus we have

(7.14) If all capacities in the flow network are integers, then there is a

maximum flow f for which every flow value f (e) is an integer.

Note that (7.14) does not claim that every maximum flow is integer-valued,

only that some maximum flow has this property. Curiously, although (7.14)

makes no reference to the Ford-Fulkerson Algorithm, our algorithmic approach

here provides what is probably the easiest way to prove it.

Real Numbers as Capacities? Finally, before moving on, we can ask how

crucial our assumption of integer capacities was (ignoring (7.4), (7.5) and

(7.14), which clearly needed it). First we notice that allowing capacities to be

rational numbers does not make the situation any more general, since we can

determine the least common multiple of all capacities, and multiply them all

by this value to obtain an equivalent problem with integer capacities.

But what if we have real numbers as capacities? Where in the proof did we

rely on the capacities being integers? In fact, we relied on it quite crucially: We

used (7.2) to establish, in (7.4), that the value of the flow increased by at least 1

in every step. With real numbers as capacities, we should be concerned that the

value of our flow keeps increasing, but in increments that become arbitrarily

smaller and smaller; and hence we have no guarantee that the number of

iterations of the loop is finite. And this turns out to be an extremely real worry,

for the following reason: With pathological choices for the augmenting path,

the Ford-Fulkerson Algorithm with real-valued capacities can run forever.

However, one can still prove that the Max-Flow Min-Cut Theorem (7.12) is

true even if the capacities may be real numbers. Note that (7.9) assumed only

that the flow f has no s-t path in its residual graph Gf , in order to conclude that

there is an s-t cut of equal value. Clearly, for any flow f of maximum value, the

residual graph has no s-t-path; otherwise there would be a way to increase the

value of the flow. So one can prove (7.12) in the case of real-valued capacities

by simply establishing that for every flow network, there exists a maximum

flow.

Of course, the capacities in any practical application of network flow would

be integers or rational numbers. However, the problem of pathological choices

for the augmenting paths can manifest itself even with integer capacities: It

can make the Ford-Fulkerson Algorithm take a gigantic number of iterations.

352 Chapter 7 Network Flow

In the next section, we discuss how to select augmenting paths so as to avoid

the potential bad behavior of the algorithm.

7.3 Choosing Good Augmenting Paths
In the previous section, we saw that any way of choosing an augmenting path

increases the value of the flow, and this led to a bound of C on the number of

augmentations, where C =
∑

e out of s ce. When C is not very large, this can be

a reasonable bound; however, it is very weak when C is large.

To get a sense for how bad this bound can be, consider the example graph

in Figure 7.2; but this time assume the capacities are as follows: The edges

(s, v), (s, u), (v, t) and (u, t) have capacity 100, and the edge (u, v) has capacity

1, as shown in Figure 7.6. It is easy to see that the maximum flow has value 200,

and has f (e) = 100 for the edges (s, v), (s, u), (v, t) and (u, t) and value 0 on the

edge (u, v). This flow can be obtained by a sequence of two augmentations,

using the paths of nodes s, u, t and path s, v, t. But consider how bad the

Ford-Fulkerson Algorithm can be with pathological choices for the augmenting

paths. Suppose we start with augmenting path P1 of nodes s, u, v, t in this

order (as shown in Figure 7.6). This path has bottleneck(P1, f) = 1. After

this augmentation, we have f (e) = 1 on the edge e = (u, v), so the reverse

edge is in the residual graph. For the next augmenting path, we choose the

path P2 of the nodes s, v, u, t in this order. In this second augmentation, we

get bottleneck(P2, f) = 1 as well. After this second augmentation, we have

f (e) = 0 for the edge e = (u, v), so the edge is again in the residual graph.

Suppose we alternate between choosing P1 and P2 for augmentation. In this

case, each augmentation will have 1 as the bottleneck capacity, and it will

take 200 augmentations to get the desired flow of value 200. This is exactly

the bound we proved in (7.4), since C = 200 in this example.

Designing a Faster Flow Algorithm

The goal of this section is to show that with a better choice of paths, we can

improve this bound significantly. A large amount of work has been devoted

to finding good ways of choosing augmenting paths in the Maximum-Flow

Problem so as to minimize the number of iterations. We focus here on one

of the most natural approaches and will mention other approaches at the end

of the section. Recall that augmentation increases the value of the maximum

flow by the bottleneck capacity of the selected path; so if we choose paths

with large bottleneck capacity, we will be making a lot of progress. A natural

idea is to select the path that has the largest bottleneck capacity. Having to

find such paths can slow down each individual iteration by quite a bit. We will

avoid this slowdown by not worrying about selecting the path that has exactly

7.3 Choosing Good Augmenting Paths 353

100 100

1

100 100

u

ts

P1 1

99 100

1

100 1

u

v

ts

P2

P1

P2

1

1

99 99

1

1

99

99 1

u

v

ts

2

1

98 99

1

1

98

99 2

u

v

ts

(b)(a)

(d)(c)

v

Figure 7.6 Parts (a) through (d) depict four iterations of the Ford-Fulkerson Algorithm

using a bad choice of augmenting paths: The augmentations alternate between the path

P1 through the nodes s, u, v, t in order and the path P2 through the nodes s, v, u, t in

order.

the largest bottleneck capacity. Instead, we will maintain a so-called scaling

parameter �, and we will look for paths that have bottleneck capacity of at

least �.

Let Gf (�) be the subset of the residual graph consisting only of edges with

residual capacity of at least �. We will work with values of � that are powers

of 2. The algorithm is as follows.

Scaling Max-Flow

Initially f (e) = 0 for all e in G

Initially set � to be the largest power of 2 that is no larger

than the maximum capacity out of s: � ≤ maxe out of s ce

While � ≥ 1

While there is an s-t path in the graph Gf (�)

Let P be a simple s-t path in Gf (�)

354 Chapter 7 Network Flow

f ′ = augment(f , P)

Update f to be f ′ and update Gf (�)

Endwhile

� = �/2

Endwhile

Return f

Analyzing the Algorithm

First observe that the new Scaling Max-Flow Algorithm is really just an

implementation of the original Ford-Fulkerson Algorithm. The new loops, the

value �, and the restricted residual graph Gf (�) are only used to guide the

selection of residual path—with the goal of using edges with large residual

capacity for as long as possible. Hence all the properties that we proved

about the original Max-Flow Algorithm are also true for this new version: the

flow remains integer-valued throughout the algorithm, and hence all residual

capacities are integer-valued.

(7.15) If the capacities are integer-valued, then throughout the Scaling Max-

Flow Algorithm the flow and the residual capacities remain integer-valued. This

implies that when � = 1, Gf (�) is the same as Gf , and hence when the algorithm

terminates the flow, f is of maximum value.

Next we consider the running time. We call an iteration of the outside

While loop—with a fixed value of �—the �-scaling phase. It is easy to give

an upper bound on the number of different �-scaling phases, in terms of the

value C =
∑

e out of s ce that we also used in the previous section. The initial

value of � is at most C, it drops by factors of 2, and it never gets below 1.

Thus,

(7.16) The number of iterations of the outer While loop is at most 1 +

⌈log2 C⌉.

The harder part is to bound the number of augmentations done in each

scaling phase. The idea here is that we are using paths that augment the flow

by a lot, and so there should be relatively few augmentations. During the �-

scaling phase, we only use edges with residual capacity of at least �. Using

(7.3), we have

(7.17) During the �-scaling phase, each augmentation increases the flow

value by at least �.

7.3 Choosing Good Augmenting Paths 355

The key insight is that at the end of the �-scaling phase, the flow f cannot be

too far from the maximum possible value.

(7.18) Let f be the flow at the end of the �-scaling phase. There is an s-t

cut (A, B) in G for which c(A, B) ≤ ν(f) + m�, where m is the number of edges

in the graph G. Consequently, the maximum flow in the network has value at

most ν(f) + m�.

Proof. This proof is analogous to our proof of (7.9), which established that

the flow returned by the original Max-Flow Algorithm is of maximum value.

As in that proof, we must identify a cut (A, B) with the desired property.

Let A denote the set of all nodes v in G for which there is an s-v path in Gf (�).

Let B denote the set of all other nodes: B = V − A. We can see that (A, B) is

indeed an s-t cut as otherwise the phase would not have ended.

Now consider an edge e = (u, v) in G for which u ∈ A and v ∈ B. We claim

that ce < f (e) + �. For if this were not the case, then e would be a forward

edge in the graph Gf (�), and since u ∈ A, there is an s-u path in Gf (�);

appending e to this path, we would obtain an s-v path in Gf (�), contradicting

our assumption that v ∈ B. Similarly, we claim that for any edge e′ = (u′, v′) in

G for which u′ ∈ B and v′ ∈ A, we have f (e′) < �. Indeed, if f (e′) ≥ �, then e′

would give rise to a backward edge e′′ = (v′, u′) in the graph Gf (�), and since

v′ ∈ A, there is an s-v′ path in Gf (�); appending e′′ to this path, we would

obtain an s-u′ path in Gf (�), contradicting our assumption that u′ ∈ B.

So all edges e out of A are almost saturated—they satisfy ce < f (e) + �—

and all edges into A are almost empty—they satisfy f (e) < �. We can now use

(7.6) to reach the desired conclusion:

ν(f) =
∑

e out of A

f (e) −
∑

e into A

f (e)

≥
∑

e out of A

(ce − �) −
∑

e into A

�

=
∑

e out of A

ce −
∑

e out of A

� −
∑

e into A

�

≥ c(A, B) − m�.

Here the first inequality follows from our bounds on the flow values of edges

across the cut, and the second inequality follows from the simple fact that the

graph only contains m edges total.

The maximum-flow value is bounded by the capacity of any cut by (7.8).

We use the cut (A, B) to obtain the bound claimed in the second statement.

356 Chapter 7 Network Flow

(7.19) The number of augmentations in a scaling phase is at most 2m.

Proof. The statement is clearly true in the first scaling phase: we can use

each of the edges out of s only for at most one augmentation in that phase.

Now consider a later scaling phase �, and let fp be the flow at the end of the

previous scaling phase. In that phase, we used �′ = 2� as our parameter. By

(7.18), the maximum flow f ∗ is at most ν(f ∗) ≤ ν(fp) + m�′ = ν(fp) + 2m�. In

the �-scaling phase, each augmentation increases the flow by at least �, and

hence there can be at most 2m augmentations.

An augmentation takes O(m) time, including the time required to set up

the graph and find the appropriate path. We have at most 1+ ⌈log2 C⌉ scaling

phases and at most 2m augmentations in each scaling phase. Thus we have

the following result.

(7.20) The Scaling Max-Flow Algorithm in a graph with m edges and integer

capacities finds a maximum flow in at most 2m(1+ ⌈log2 C⌉) augmentations.

It can be implemented to run in at most O(m2 log2 C) time.

When C is large, this time bound is much better than the O(mC) bound

that applied to an arbitrary implementation of the Ford-Fulkerson Algorithm.

In our example at the beginning of this section, we had capacities of size

100, but we could just as well have used capacities of size 2100; in this case,

the generic Ford-Fulkerson Algorithm could take time proportional to 2100,

while the scaling algorithm will take time proportional to log2(2
100) = 100.

One way to view this distinction is as follows: The generic Ford-Fulkerson

Algorithm requires time proportional to the magnitude of the capacities, while

the scaling algorithm only requires time proportional to the number of bits

needed to specify the capacities in the input to the problem. As a result, the

scaling algorithm is running in time polynomial in the size of the input (i.e., the

number of edges and the numerical representation of the capacities), and so

it meets our traditional goal of achieving a polynomial-time algorithm. Bad

implementations of the Ford-Fulkerson Algorithm, which can require close

to C iterations, do not meet this standard of polynomiality. (Recall that in

Section 6.4 we used the term pseudo-polynomial to describe such algorithms,

which are polynomial in the magnitudes of the input numbers but not in the

number of bits needed to represent them.)

Extensions: Strongly Polynomial Algorithms

Could we ask for something qualitatively better than what the scaling algo-

rithm guarantees? Here is one thing we could hope for: Our example graph

(Figure 7.6) had four nodes and five edges; so it would be nice to use a

7.4 The Preflow-Push Maximum-Flow Algorithm 357

number of iterations that is polynomial in the numbers 4 and 5, completely

independently of the values of the capacities. Such an algorithm, which is

polynomial in |V| and |E| only, and works with numbers having a polyno-

mial number of bits, is called a strongly polynomial algorithm. In fact, there

is a simple and natural implementation of the Ford-Fulkerson Algorithm that

leads to such a strongly polynomial bound: each iteration chooses the aug-

menting path with the fewest number of edges. Dinitz, and independently

Edmonds and Karp, proved that with this choice the algorithm terminates in

at most O(mn) iterations. In fact, these were the first polynomial algorithms

for the Maximum-Flow Problem. There has since been a huge amount of work

devoted to improving the running times of maximum-flow algorithms. There

are currently algorithms that achieve running times of O(mn log n), O(n3), and

O(min(n2/3, m1/2)m log n log U), where the last bound assumes that all capac-

ities are integral and at most U. In the next section, we’ll discuss a strongly

polynomial maximum-flow algorithm based on a different principle.

* 7.4 The Preflow-Push Maximum-Flow Algorithm
From the very beginning, our discussion of the Maximum-Flow Problem has

been centered around the idea of an augmenting path in the residual graph.

However, there are some very powerful techniques for maximum flow that are

not explicitly based on augmenting paths. In this section we study one such

technique, the Preflow-Push Algorithm.

Designing the Algorithm

Algorithms based on augmenting paths maintain a flow f , and use the augment

procedure to increase the value of the flow. By way of contrast, the Preflow-

Push Algorithm will, in essence, increase the flow on an edge-by-edge basis.

Changing the flow on a single edge will typically violate the conservation con-

dition, and so the algorithm will have to maintain something less well behaved

than a flow—something that does not obey conservation—as it operates.

Preflows We say that an s-t preflow (preflow, for short) is a function f that

maps each edge e to a nonnegative real number, f : E → R+. A preflow f must

satisfy the capacity conditions:

(i) For each e ∈ E, we have 0 ≤ f (e) ≤ ce.

In place of the conservation conditions, we require only inequalities: Each

node other than s must have at least as much flow entering as leaving.

(ii) For each node v other than the source s, we have
∑

e into v

f (e) ≥
∑

e out of v

f (e).

358 Chapter 7 Network Flow

We will call the difference

ef (v) =
∑

e into v

f (e) −
∑

e out of v

f (e)

the excess of the preflow at node v. Notice that a preflow where all nodes

other than s and t have zero excess is a flow, and the value of the flow is

exactly ef (t) = −ef (s). We can still define the concept of a residual graph Gf

for a preflow f , just as we did for a flow. The algorithm will “push” flow along

edges of the residual graph (using both forward and backward edges).

Preflows and Labelings The Preflow-Push Algorithm will maintain a preflow

and work on converting the preflow into a flow. The algorithm is based on the

physical intuition that flow naturally finds its way “downhill.” The “heights”

for this intuition will be labels h(v) for each node v that the algorithm will

define and maintain, as shown in Figure 7.7. We will push flow from nodes

with higher labels to those with lower labels, following the intuition that fluid

flows downhill. To make this precise, a labeling is a function h : V → Z≥0 from

the nodes to the nonnegative integers. We will also refer to the labels as heights

of the nodes. We will say that a labeling h and an s-t preflow f are compatible if

(i) (Source and sink conditions) h(t) = 0 and h(s) = n,

(ii) (Steepness conditions) For all edges (v, w) ∈ Ef in the residual graph, we

have h(v) ≤ h(w) + 1.

Edges in the residual graph
may not be too steep.

4

3

2

1

0

Heights

Nodes

t

Figure 7.7 A residual graph and a compatible labeling. No edge in the residual graph

can be too “steep”—its tail can be at most one unit above its head in height. The source

node s must have h(s) = n and is not drawn in the figure.

7.4 The Preflow-Push Maximum-Flow Algorithm 359

Intuitively, the height difference n between the source and the sink is meant to

ensure that the flow starts high enough to flow from s toward the sink t, while

the steepness condition will help by making the descent of the flow gradual

enough to make it to the sink.

The key property of a compatible preflow and labeling is that there can be

no s-t path in the residual graph.

(7.21) If s-t preflow f is compatible with a labeling h, then there is no s-t

path in the residual graph Gf .

Proof. We prove the statement by contradiction. Let P be a simple s-t path in

the residual graph G. Assume that the nodes along P are s, v1, . . . , vk = t. By

definition of a labeling compatible with preflow f , we have that h(s) = n. The

edge (s, v1) is in the residual graph, and hence h(v1) ≥ h(s) − 1= n − 1. Using

induction on i and the steepness condition for the edge (vi−1, vi), we get that

for all nodes vi in path P the height is at least h(vi) ≥ n − i. Notice that the last

node of the path is vk = t; hence we get that h(t) ≥ n − k. However, h(t) = 0

by definition; and k < n as the path P is simple. This contradiction proves the

claim.

Recall from (7.9) that if there is no s-t path in the residual graph Gf of a

flow f , then the flow has maximum value. This implies the following corollary.

(7.22) If s-t flow f is compatible with a labeling h, then f is a flow of

maximum value.

Note that (7.21) applies to preflows, while (7.22) is more restrictive in

that it applies only to flows. Thus the Preflow-Push Algorithm will maintain a

preflow f and a labeling h compatible with f , and it will work on modifying f

and h so as to move f toward being a flow. Once f actually becomes a flow, we

can invoke (7.22) to conclude that it is a maximum flow. In light of this, we

can view the Preflow-Push Algorithm as being in a way orthogonal to the Ford-

Fulkerson Algorithm. The Ford-Fulkerson Algorithm maintains a feasible flow

while changing it gradually toward optimality. The Preflow-Push Algorithm,

on the other hand, maintains a condition that would imply the optimality of a

preflow f , if it were to be a feasible flow, and the algorithm gradually transforms

the preflow f into a flow.

To start the algorithm, we will need to define an initial preflow f and

labeling h that are compatible. We will use h(v) = 0 for all v �= s, and h(s) = n,

as our initial labeling. To make a preflow f compatible with this labeling, we

need to make sure that no edges leaving s are in the residual graph (as these

edges do not satisfy the steepness condition). To this end, we define the initial

360 Chapter 7 Network Flow

preflow as f (e) = ce for all edges e = (s, v) leaving the source, and f (e) = 0 for

all other edges.

(7.23) The initial preflow f and labeling h are compatible.

Pushing and Relabeling Next we will discuss the steps the algorithm makes

toward turning the preflow f into a feasible flow, while keeping it compatible

with some labeling h. Consider any node v that has excess—that is, ef (v) > 0.

If there is any edge e in the residual graph Gf that leaves v and goes to a node

w at a lower height (note that h(w) is at most 1 less than h(v) due to the

steepness condition), then we can modify f by pushing some of the excess

flow from v to w. We will call this a push operation.

push(f , h, v, w)

Applicable if ef (v) > 0, h(w) < h(v) and (v, w) ∈ Ef

If e = (v, w) is a forward edge then

let δ = min(ef (v), ce − f (e)) and

increase f (e) by δ

If (v, w) is a backward edge then

let e = (w, v), δ = min(ef (v), f (e)) and

decrease f (e) by δ

Return(f , h)

If we cannot push the excess of v along any edge leaving v, then we will

need to raise v’s height. We will call this a relabel operation.

relabel(f , h, v)

Applicable if ef (v) > 0, and

for all edges (v, w) ∈ Ef we have h(w) ≥ h(v)

Increase h(v) by 1

Return(f , h)

The Full Preflow-Push Algorithm So, in summary, the Preflow-Push Algo-

rithm is as follows.

Preflow-Push

Initially h(v) = 0 for all v �= s and h(s) = n and

f (e) = ce for all e = (s, v) and f (e) = 0 for all other edges

While there is a node v �= t with excess ef (v) > 0

Let v be a node with excess

If there is w such that push(f , h, v, w) can be applied then

push(f , h, v, w)

7.4 The Preflow-Push Maximum-Flow Algorithm 361

Else

relabel(f , h, v)

Endwhile

Return(f)

Analyzing the Algorithm

As usual, this algorithm is somewhat underspecified. For an implementation

of the algorithm, we will have to specify which node with excess to choose,

and how to efficiently select an edge on which to push. However, it is clear

that each iteration of this algorithm can be implemented in polynomial time.

(We’ll discuss later how to implement it reasonably efficiently.) Further, it is

not hard to see that the preflow f and the labeling h are compatible throughout

the algorithm. If the algorithm terminates—something that is far from obvious

based on its description—then there are no nodes other than t with positive

excess, and hence the preflow f is in fact a flow. It then follows from (7.22)

that f would be a maximum flow at termination.

We summarize a few simple observations about the algorithm.

(7.24) Throughout the Preflow-Push Algorithm:

(i) the labels are nonnegative integers;

(ii) f is a preflow, and if the capacities are integral, then the preflow f is

integral; and

(iii) the preflow f and labeling h are compatible.

If the algorithm returns a preflow f , then f is a flow of maximum value.

Proof. By (7.23) the initial preflow f and labeling h are compatible. We will

show using induction on the number of push and relabel operations that

f and h satisfy the properties of the statement. The push operation modifies

the preflow f , but the bounds on δ guarantee that the f returned satisfies

the capacity constraints, and that excesses all remain nonnegative, so f is a

preflow. To see that the preflow f and the labeling h are compatible, note that

push(f , h, v, w) can add one edge to the residual graph, the reverse edge (v, w),

and this edge does satisfy the steepness condition. The relabel operation

increases the label of v, and hence increases the steepness of all edges leaving

v. However, it only applies when no edge leaving v in the residual graph is

going downward, and hence the preflow f and the labeling h are compatible

after relabeling.

The algorithm terminates if no node other than s or t has excess. In this

case, f is a flow by definition; and since the preflow f and the labeling h

362 Chapter 7 Network Flow

remain compatible throughout the algorithm, (7.22) implies that f is a flow of

maximum value.

Next we will consider the number of push and relabel operations. First

we will prove a limit on the relabel operations, and this will help prove a

limit on the maximum number of push operations possible. The algorithm

never changes the label of s (as the source never has positive excess). Each

other node v starts with h(v) = 0, and its label increases by 1 every time it

changes. So we simply need to give a limit on how high a label can get. We

only consider a node v for relabelwhen v has excess. The only source of flow

in the network is the source s; hence, intuitively, the excess at v must have

originated at s. The following consequence of this fact will be key to bounding

the labels.

(7.25) Let f be a preflow. If the node v has excess, then there is a path in Gf

from v to the source s.

Proof. Let A denote all the nodes w such that there is a path from w to s in

the residual graph Gf , and let B = V−A. We need to show that all nodes with

excess are in A.

Notice that s ∈ A. Further, no edges e = (x, y) leaving A can have positive

flow, as an edge with f (e) > 0 would give rise to a reverse edge (y, x) in the

residual graph, and then y would have been in A. Now consider the sum of

excesses in the set B, and recall that each node in B has nonnegative excess,

as s �∈ B.

0 ≤
∑

v∈B

ef (v) =
∑

v∈B

(f in(v) − f out(v))

Let’s rewrite the sum on the right as follows. If an edge e has both ends

in B, then f (e) appears once in the sum with a “+” and once with a “−”, and

hence these two terms cancel out. If e has only its head in B, then e leaves A,

and we saw above that all edges leaving A have f (e) = 0. If e has only its tail

in B, then f (e) appears just once in the sum, with a “−”. So we get

0 ≤
∑

v∈B

ef (v) = −f out(B).

Since flows are nonnegative, we see that the sum of the excesses in B is zero;

since each individual excess in B is nonnegative, they must therefore all be 0.

Now we are ready to prove that the labels do not change too much. Recall

that n denotes the number of nodes in V.

7.4 The Preflow-Push Maximum-Flow Algorithm 363

(7.26) Throughout the algorithm, all nodes have h(v) ≤ 2n − 1.

Proof. The initial labels h(t) = 0 and h(s) = n do not change during the

algorithm. Consider some other node v �= s, t. The algorithm changes v’s label

only when applying the relabel operation, so let f and h be the preflow and

labeling returned by a relabel(f , h, v) operation. By (7.25) there is a path P in

the residual graph Gf from v to s. Let |P| denote the number of edges in P, and

note that |P| ≤ n − 1. The steepness condition implies that heights of the nodes

can decrease by at most 1 along each edge in P, and hence h(v) − h(s) ≤ |P|,

which proves the statement.

Labels are monotone increasing throughout the algorithm, so this state-

ment immediately implies a limit on the number of relabeling operations.

(7.27) Throughout the algorithm, each node is relabeled at most 2n − 1 times,

and the total number of relabeling operations is less than 2n2.

Next we will bound the number of push operations. We will distinguish two

kinds of push operations. A push(f , h, v, w) operation is saturating if either

e = (v, w) is a forward edge in Ef and δ = ce − f (e), or (v, w) is a backward

edge with e = (w, v) and δ = f (e). In other words, the push is saturating if,

after the push, the edge (v, w) is no longer in the residual graph. All other

push operations will be referred to as nonsaturating.

(7.28) Throughout the algorithm, the number of saturating push operations

is at most 2nm.

Proof. Consider an edge (v, w) in the residual graph. After a saturating

push(f , h, v, w) operation, we have h(v) = h(w) + 1, and the edge (v, w) is no

longer in the residual graph Gf , as shown in Figure 7.8. Before we can push

again along this edge, first we have to push from w to v to make the edge

(v, w) appear in the residual graph. However, in order to push from w to v,

we first need for w’s label to increase by at least 2 (so that w is above v). The

label of w can increase by 2 at most n − 1 times, so a saturating push from v

to w can occur at most n times. Each edge e ∈ E can give rise to two edges in

the residual graph, so overall we can have at most 2nm saturating pushes.

The hardest part of the analysis is proving a bound on the number of

nonsaturating pushes, and this also will be the bottleneck for the theoretical

bound on the running time.

(7.29) Throughout the algorithm, the number of nonsaturating push opera-

tions is at most 2n2m.

364 Chapter 7 Network Flow

Heights

Nodes

4

3

2

1

0

v

w

t

The height of node w has to
increase by 2 before it can
push flow back to node v.

Figure 7.8 After a saturating push(f , h, v, w), the height of v exceeds the height of w

by 1.

Proof. For this proof, we will use a so-called potential function method. For a

preflow f and a compatible labeling h, we define

�(f , h) =
∑

v:ef (v)>0

h(v)

to be the sum of the heights of all nodes with positive excess. (� is often called

a potential since it resembles the “potential energy” of all nodes with positive

excess.)

In the initial preflow and labeling, all nodes with positive excess are at

height 0, so �(f , h) = 0. �(f , h) remains nonnegative throughout the algo-

rithm. A nonsaturating push(f , h, v, w) operation decreases �(f , h) by at least

1, since after the push the node v will have no excess, and w, the only node

that gets new excess from the operation, is at a height 1 less than v. How-

ever, each saturating push and each relabel operation can increase �(f , h).

A relabel operation increases �(f , h) by exactly 1. There are at most 2n2

relabel operations, so the total increase in �(f , h) due to relabel opera-

tions is 2n2. A saturating push(f , h, v, w) operation does not change labels,

but it can increase �(f , h), since the node w may suddenly acquire positive

excess after the push. This would increase �(f , h) by the height of w, which

is at most 2n − 1. There are at most 2nm saturating push operations, so the

total increase in �(f , h) due to push operations is at most 2mn(2n − 1). So,

between the two causes, �(f , h) can increase by at most 4mn2 during the

algorithm.

7.4 The Preflow-Push Maximum-Flow Algorithm 365

But since � remains nonnegative throughout, and it decreases by at least

1 on each nonsaturating push operation, it follows that there can be at most

4mn2 nonsaturating push operations.

Extensions: An Improved Version of the Algorithm

There has been a lot of work devoted to choosing node selection rules for

the Preflow-Push Algorithm to improve the worst-case running time. Here we

consider a simple rule that leads to an improved O(n3) bound on the number

of nonsaturating push operations.

(7.30) If at each step we choose the node with excess at maximum height,

then the number of nonsaturating push operations throughout the algorithm is

at most 4n3.

Proof. Consider the maximum height H = maxv:ef (v)>0 h(v) of any node with

excess as the algorithm proceeds. The analysis will use this maximum height

H in place of the potential function � in the previous O(n2m) bound.

This maximum height H can only increase due to relabeling (as flow

is always pushed to nodes at lower height), and so the total increase in H

throughout the algorithm is at most 2n2 by (7.26). H starts out 0 and remains

nonnegative, so the number of times H changes is at most 4n2.

Now consider the behavior of the algorithm over a phase of time in

which H remains constant. We claim that each node can have at most one

nonsaturating push operation during this phase. Indeed, during this phase,

flow is being pushed from nodes at height H to nodes at height H − 1; and

after a nonsaturating push operation from v, it must receive flow from a node

at height H + 1 before we can push from it again.

Since there are at most n nonsaturating push operations between each

change to H, and H changes at most 4n2 times, the total number of nonsatu-

rating push operations is at most 4n3.

As a follow-up to (7.30), it is interesting to note that experimentally the

computational bottleneck of the method is the number of relabeling operations,

and a better experimental running time is obtained by variants that work on

increasing labels faster than one by one. This is a point that we pursue further

in some of the exercises.

Implementing the Preflow-Push Algorithm

Finally, we need to briefly discuss how to implement this algorithm efficiently.

Maintaining a few simple data structures will allow us to effectively implement

366 Chapter 7 Network Flow

the operations of the algorithm in constant time each, and overall to imple-

ment the algorithm in time O(mn) plus the number of nonsaturating push

operations. Hence the generic algorithm will run in O(mn2) time, while the

version that always selects the node at maximum height will run in O(n3) time.

We can maintain all nodes with excess on a simple list, and so we will be

able to select a node with excess in constant time. One has to be a bit more

careful to be able to select a node with maximum height H in constant time. In

order to do this, we will maintain a linked list of all nodes with excess at every

possible height. Note that whenever a node v gets relabeled, or continues to

have positive excess after a push, it remains a node with maximum height H.

Thus we only have to select a new node after a push when the current node v

no longer has positive excess. If node v was at height H, then the new node at

maximum height will also be at height H or, if no node at height H has excess,

then the maximum height will be H − 1, since the previous push operation

out of v pushed flow to a node at height H − 1.

Now assume we have selected a node v, and we need to select an edge

(v, w) on which to apply push(f , h, v, w) (or relabel(f , h, v) if no such w

exists). To be able to select an edge quickly, we will use the adjacency list

representation of the graph. More precisely, we will maintain, for each node v,

all possible edges leaving v in the residual graph (both forward and backward

edges) in a linked list, and with each edge we keep its capacity and flow value.

Note that this way we have two copies of each edge in our data structure: a

forward and a backward copy. These two copies will have pointers to each

other, so that updates done at one copy can be carried over to the other one

in O(1) time. We will select edges leaving a node v for push operations in the

order they appear on node v’s list. To facilitate this selection, we will maintain

a pointer current(v) for each node v to the last edge on the list that has been

considered for a push operation. So, if node v no longer has excess after a

nonsaturating push operation out of node v, the pointer current(v) will stay

at this edge, and we will use the same edge for the next push operation out of

v. After a saturating push operation out of node v, we advance current(v) to

the next edge on the list.

The key observation is that, after advancing the pointer current(v) from

an edge (v, w), we will not want to apply push to this edge again until we

relabel v.

(7.31) After the current(v) pointer is advanced from an edge (v, w), we

cannot apply push to this edge until v gets relabeled.

Proof. At the moment current(v) is advanced from the edge (v, w), there is

some reason push cannot be applied to this edge. Either h(w) ≥ h(v), or the

7.5 A First Application: The Bipartite Matching Problem 367

edge is not in the residual graph. In the first case, we clearly need to relabel v

before applying a push on this edge. In the latter case, one needs to apply push

to the reverse edge (w, v) to make (v, w) reenter the residual graph. However,

when we apply push to edge (w, v), then w is above v, and so v needs to be

relabeled before one can push flow from v to w again.

Since edges do not have to be considered again for push before relabeling,

we get the following.

(7.32) When the current(v) pointer reaches the end of the edge list for v,

the relabel operation can be applied to node v.

After relabeling node v, we reset current(v) to the first edge on the list and

start considering edges again in the order they appear on v’s list.

(7.33) The running time of the Preflow-Push Algorithm, implemented using

the above data structures, is O(mn) plus O(1) for each nonsaturating push

operation. In particular, the generic Preflow-Push Algorithm runs in O(n2m)

time, while the version where we always select the node at maximum height

runs in O(n3) time.

Proof. The initial flow and relabeling is set up in O(m) time. Both push and

relabel operations can be implemented in O(1) time, once the operation

has been selected. Consider a node v. We know that v can be relabeled at

most 2n times throughout the algorithm. We will consider the total time the

algorithm spends on finding the right edge on which to push flow out of node v,

between two times that node v gets relabeled. If node v has dv adjacent edges,

then by (7.32) we spend O(dv) time on advancing the current(v) pointer

between consecutive relabelings of v. Thus the total time spent on advancing

the current pointers throughout the algorithm is O(
∑

v∈V ndv) = O(mn), as

claimed.

7.5 A First Application: The Bipartite Matching
Problem

Having developed a set of powerful algorithms for the Maximum-Flow Prob-

lem, we now turn to the task of developing applications of maximum flows

and minimum cuts in graphs. We begin with two very basic applications. First,

in this section, we discuss the Bipartite Matching Problem mentioned at the

beginning of this chapter. In the next section, we discuss the more general

Disjoint Paths Problem.

368 Chapter 7 Network Flow

The Problem

One of our original goals in developing the Maximum-Flow Problem was to

be able to solve the Bipartite Matching Problem, and we now show how to

do this. Recall that a bipartite graph G = (V , E) is an undirected graph whose

node set can be partitioned as V = X ∪ Y, with the property that every edge

e ∈ E has one end in X and the other end in Y. A matching M in G is a subset

of the edges M ⊆ E such that each node appears in at most one edge in M.

The Bipartite Matching Problem is that of finding a matching in G of largest

possible size.

Designing the Algorithm

The graph defining a matching problem is undirected, while flow networks are

directed; but it is actually not difficult to use an algorithm for the Maximum-

Flow Problem to find a maximum matching.

Beginning with the graph G in an instance of the Bipartite Matching

Problem, we construct a flow network G′ as shown in Figure 7.9. First we

direct all edges in G from X to Y. We then add a node s, and an edge (s, x)

from s to each node in X. We add a node t, and an edge (y, t) from each node

in Y to t. Finally, we give each edge in G′ a capacity of 1.

We now compute a maximum s-t flow in this network G′. We will discover

that the value of this maximum is equal to the size of the maximum matching

in G. Moreover, our analysis will show how one can use the flow itself to

recover the matching.

s t

(a) (b)

Figure 7.9 (a) A bipartite graph. (b) The corresponding flow network, with all capacities

equal to 1.

7.5 A First Application: The Bipartite Matching Problem 369

Analyzing the Algorithm

The analysis is based on showing that integer-valued flows in G′ encode

matchings in G in a fairly transparent fashion. First, suppose there is a

matching in G consisting of k edges (xi1
, yi1

), . . . , (xik
, yik

). Then consider the

flow f that sends one unit along each path of the form s, xij
, yij

, t—that is,

f (e) = 1 for each edge on one of these paths. One can verify easily that the

capacity and conservation conditions are indeed met and that f is an s-t flow

of value k.

Conversely, suppose there is a flow f ′ in G′ of value k. By the integrality

theorem for maximum flows (7.14), we know there is an integer-valued flow f

of value k; and since all capacities are 1, this means that f (e) is equal to either

0 or 1 for each edge e. Now, consider the set M ′ of edges of the form (x, y) on

which the flow value is 1.

Here are three simple facts about the set M ′.

(7.34) M ′ contains k edges.

Proof. To prove this, consider the cut (A, B) in G′ with A = {s} ∪ X. The value

of the flow is the total flow leaving A, minus the total flow entering A. The

first of these terms is simply the cardinality of M ′, since these are the edges

leaving A that carry flow, and each carries exactly one unit of flow. The second

of these terms is 0, since there are no edges entering A. Thus, M ′ contains k

edges.

(7.35) Each node in X is the tail of at most one edge in M ′.

Proof. To prove this, suppose x ∈ X were the tail of at least two edges in M ′.

Since our flow is integer-valued, this means that at least two units of flow

leave from x. By conservation of flow, at least two units of flow would have

to come into x—but this is not possible, since only a single edge of capacity 1

enters x. Thus x is the tail of at most one edge in M ′.

By the same reasoning, we can show

(7.36) Each node in Y is the head of at most one edge in M ′.

Combining these facts, we see that if we view M ′ as a set of edges in the

original bipartite graph G, we get a matching of size k. In summary, we have

proved the following fact.

(7.37) The size of the maximum matching in G is equal to the value of the

maximum flow in G′; and the edges in such a matching in G are the edges that

carry flow from X to Y in G′.

370 Chapter 7 Network Flow

Note the crucial way in which the integrality theorem (7.14) figured in

this construction: we needed to know if there is a maximum flow in G′ that

takes only the values 0 and 1.

Bounding the Running Time Now let’s consider how quickly we can com-

pute a maximum matching in G. Let n = |X| = |Y|, and let m be the number

of edges of G. We’ll tacitly assume that there is at least one edge incident to

each node in the original problem, and hence m ≥ n/2. The time to compute

a maximum matching is dominated by the time to compute an integer-valued

maximum flow in G′, since converting this to a matching in G is simple. For

this flow problem, we have that C =
∑

e out of s ce = |X| = n, as s has an edge

of capacity 1 to each node of X. Thus, by using the O(mC) bound in (7.5), we

get the following.

(7.38) The Ford-Fulkerson Algorithm can be used to find a maximum match-

ing in a bipartite graph in O(mn) time.

It’s interesting that if we were to use the “better” bounds of O(m2 log2 C) or

O(n3) that we developed in the previous sections, we’d get the inferior running

times of O(m2 log n) or O(n3) for this problem. There is nothing contradictory

in this. These bounds were designed to be good for all instances, even when C

is very large relative to m and n. But C = n for the Bipartite Matching Problem,

and so the cost of this extra sophistication is not needed.

It is worthwhile to consider what the augmenting paths mean in the

network G′. Consider the matching M consisting of edges (x2, y2), (x3, y3),

and (x5, y5) in the bipartite graph in Figure 7.1; see also Figure 7.10. Let f

be the corresponding flow in G′. This matching is not maximum, so f is not

a maximum s-t flow, and hence there is an augmenting path in the residual

graph G′
f
. One such augmenting path is marked in Figure 7.10(b). Note that

the edges (x2, y2) and (x3, y3) are used backward, and all other edges are used

forward. All augmenting paths must alternate between edges used backward

and forward, as all edges of the graph G′ go from X to Y. Augmenting paths

are therefore also called alternating paths in the context of finding a maximum

matching. The effect of this augmentation is to take the edges used backward

out of the matching, and replace them with the edges going forward. Because

the augmenting path goes from s to t, there is one more forward edge than

backward edge; thus the size of the matching increases by one.

7.5 A First Application: The Bipartite Matching Problem 371

x1 y1

x2 y2

x3 y3

x4 y4

x5 y5

x1 y1

x2 y2

x3 y3

x4 y4

x5 y5

x1 y1

x2 y2

x3 y3

x4 y4

x5 y5

(a) (b) (c)

Figure 7.10 (a) A bipartite graph, with a matching M. (b) The augmenting path in the

corresponding residual graph. (c) The matching obtained by the augmentation.

Extensions: The Structure of Bipartite Graphs with
No Perfect Matching

Algorithmically, we’ve seen how to find perfect matchings: We use the algo-

rithm above to find a maximum matching and then check to see if this matching

is perfect.

But let’s ask a slightly less algorithmic question. Not all bipartite graphs

have perfect matchings. What does a bipartite graph without a perfect match-

ing look like? Is there an easy way to see that a bipartite graph does not have a

perfect matching—or at least an easy way to convince someone the graph has

no perfect matching, after we run the algorithm? More concretely, it would be

nice if the algorithm, upon concluding that there is no perfect matching, could

produce a short “certificate” of this fact. The certificate could allow someone

to be quickly convinced that there is no perfect matching, without having to

look over a trace of the entire execution of the algorithm.

One way to understand the idea of such a certificate is as follows. We can

decide if the graph G has a perfect matching by checking if the maximum flow

in a related graph G′ has value at least n. By the Max-Flow Min-Cut Theorem,

there will be an s-t cut of capacity less than n if the maximum-flow value in

G′ has value less than n. So, in a way, a cut with capacity less than n provides

such a certificate. However, we want a certificate that has a natural meaning

in terms of the original graph G.

What might such a certificate look like? For example, if there are nodes

x1, x2 ∈ X that have only one incident edge each, and the other end of each

edge is the same node y, then clearly the graph has no perfect matching: both

x1 and x2 would need to get matched to the same node y. More generally,

consider a subset of nodes A ⊆ X, and let Ŵ(A) ⊆ Y denote the set of all nodes

372 Chapter 7 Network Flow

that are adjacent to nodes in A. If the graph has a perfect matching, then each

node in A has to be matched to a different node in Ŵ(A), so Ŵ(A) has to be at

least as large as A. This gives us the following fact.

(7.39) If a bipartite graph G = (V , E) with two sides X and Y has a perfect

matching, then for all A ⊆ X we must have |Ŵ(A)| ≥ |A|.

This statement suggests a type of certificate demonstrating that a graph

does not have a perfect matching: a set A ⊆ X such that |Ŵ(A)| < |A|. But is the

converse of (7.39) also true? Is it the case that whenever there is no perfect

matching, there is a set A like this that proves it? The answer turns out to

be yes, provided we add the obvious condition that |X| = |Y| (without which

there could certainly not be a perfect matching). This statement is known

in the literature as Hall’s Theorem, though versions of it were discovered

independently by a number of different people—perhaps first by König—in

the early 1900s. The proof of the statement also provides a way to find such a

subset A in polynomial time.

(7.40) Assume that the bipartite graph G = (V , E) has two sides X and Y

such that |X| = |Y|. Then the graph G either has a perfect matching or there is

a subset A ⊆ X such that |Ŵ(A)| < |A|. A perfect matching or an appropriate

subset A can be found in O(mn) time.

Proof. We will use the same graph G′ as in (7.37). Assume that |X| = |Y| = n.

By (7.37) the graph G has a maximum matching if and only if the value of the

maximum flow in G′ is n.

We need to show that if the value of the maximum flow is less than n,

then there is a subset A such that |Ŵ(A)| < |A|, as claimed in the statement.

By the Max-Flow Min-Cut Theorem (7.12), if the maximum-flow value is less

than n, then there is a cut (A′, B′) with capacity less than n in G′. Now the

set A′ contains s, and may contain nodes from both X and Y as shown in

Figure 7.11. We claim that the set A = X ∩ A′ has the claimed property. This

will prove both parts of the statement, as we’ve seen in (7.11) that a minimum

cut (A′, B′) can also be found by running the Ford-Fulkerson Algorithm.

First we claim that one can modify the minimum cut (A′, B′) so as to

ensure that Ŵ(A) ⊆ A′, where A = X ∩ A′ as before. To do this, consider a node

y ∈ Ŵ(A) that belongs to B′ as shown in Figure 7.11(a). We claim that by moving

y from B′ to A′, we do not increase the capacity of the cut. For what happens

when we move y from B′ to A′? The edge (y, t) now crosses the cut, increasing

the capacity by one. But previously there was at least one edge (x, y) with

x ∈ A, since y ∈ Ŵ(A); all edges from A and y used to cross the cut, and don’t

anymore. Thus, overall, the capacity of the cut cannot increase. (Note that we

7.6 Disjoint Paths in Directed and Undirected Graphs 373

s tyx

A

A�
A�

s tyx

(a) (b)

Node y can be moved
to the s-side of the cut.

Figure 7.11 (a) A minimum cut in proof of (7.40). (b) The same cut after moving node

y to the A′ side. The edges crossing the cut are dark.

don’t have to be concerned about nodes x ∈ X that are not in A. The two ends

of the edge (x, y) will be on different sides of the cut, but this edge does not

add to the capacity of the cut, as it goes from B′ to A′.)

Next consider the capacity of this minimum cut (A′, B′) that has Ŵ(A) ⊆ A′

as shown in Figure 7.11(b). Since all neighbors of A belong to A′, we see that

the only edges out of A′ are either edges that leave the source s or that enter

the sink t. Thus the capacity of the cut is exactly

c(A′, B′) = |X ∩ B′| + |Y ∩ A′|.

Notice that |X ∩ B′| = n − |A|, and |Y ∩ A′| ≥ |Ŵ(A)|. Now the assumption that

c(A′, B′) < n implies that

n − |A| + |Ŵ(A)| ≤ |X ∩ B′| + |Y ∩ A′| = c(A′, B′) < n.

Comparing the first and the last terms, we get the claimed inequality |A| >

|Ŵ(A)|.

7.6 Disjoint Paths in Directed and
Undirected Graphs

In Section 7.1, we described a flow f as a kind of “traffic” in the network.

But our actual definition of a flow has a much more static feel to it: For each

edge e, we simply specify a number f (e) saying the amount of flow crossing e.

Let’s see if we can revive the more dynamic, traffic-oriented picture a bit, and

try formalizing the sense in which units of flow “travel” from the source to

374 Chapter 7 Network Flow

the sink. From this more dynamic view of flows, we will arrive at something

called the s-t Disjoint Paths Problem.

The Problem

In defining this problem precisely, we will deal with two issues. First, we will

make precise this intuitive correspondence between units of flow traveling

along paths, and the notion of flow we’ve studied so far. Second, we will

extend the Disjoint Paths Problem to undirected graphs. We’ll see that, despite

the fact that the Maximum-Flow Problem was defined for a directed graph, it

can naturally be used also to handle related problems on undirected graphs.

We say that a set of paths is edge-disjoint if their edge sets are disjoint, that

is, no two paths share an edge, though multiple paths may go through some

of the same nodes. Given a directed graph G = (V , E) with two distinguished

nodes s, t ∈ V, the Directed Edge-Disjoint Paths Problem is to find the maximum

number of edge-disjoint s-t paths in G. The Undirected Edge-Disjoint Paths

Problem is to find the maximum number of edge-disjoint s-t paths in an

undirected graph G. The related question of finding paths that are not only

edge-disjoint, but also node-disjoint (of course, other than at nodes s and t)

will be considered in the exercises to this chapter.

Designing the Algorithm

Both the directed and the undirected versions of the problem can be solved

very naturally using flows. Let’s start with the directed problem. Given the

graph G = (V , E), with its two distinguished nodes s and t, we define a flow

network in which s and t are the source and sink, respectively, and with a

capacity of 1 on each edge. Now suppose there are k edge-disjoint s-t paths.

We can make each of these paths carry one unit of flow: We set the flow to be

f (e) = 1 for each edge e on any of the paths, and f (e′) = 0 on all other edges,

and this defines a feasible flow of value k.

(7.41) If there are k edge-disjoint paths in a directed graph G from s to t, then

the value of the maximum s-t flow in G is at least k.

Suppose we could show the converse to (7.41) as well: If there is a flow

of value k, then there exist k edge-disjoint s-t paths. Then we could simply

compute a maximum s-t flow in G and declare (correctly) this to be the

maximum number of edge-disjoint s-t paths.

We now proceed to prove this converse statement, confirming that this

approach using flow indeed gives us the correct answer. Our analysis will

also provide a way to extract k edge-disjoint paths from an integer-valued

flow sending k units from s to t. Thus computing a maximum flow in G will

7.6 Disjoint Paths in Directed and Undirected Graphs 375

not only give us the maximum number of edge-disjoint paths, but the paths

as well.

Analyzing the Algorithm

Proving the converse direction of (7.41) is the heart of the analysis, since it

will immediately establish the optimality of the flow-based algorithm to find

disjoint paths.

To prove this, we will consider a flow of value at least k, and construct k

edge-disjoint paths. By (7.14), we know that there is a maximum flow f with

integer flow values. Since all edges have a capacity bound of 1, and the flow

is integer-valued, each edge that carries flow under f has exactly one unit of

flow on it. Thus we just need to show the following.

(7.42) If f is a 0-1 valued flow of value ν, then the set of edges with flow

value f (e) = 1 contains a set of ν edge-disjoint paths.

Proof. We prove this by induction on the number of edges in f that carry flow.

If ν = 0, there is nothing to prove. Otherwise, there must be an edge (s, u) that

carries one unit of flow. We now “trace out” a path of edges that must also

carry flow: Since (s, u) carries a unit of flow, it follows by conservation that

there is some edge (u, v) that carries one unit of flow, and then there must be

an edge (v, w) that carries one unit of flow, and so forth. If we continue in this

way, one of two things will eventually happen: Either we will reach t, or we

will reach a node v for the second time.

If the first case happens—we find a path P from s to t—then we’ll use this

path as one of our ν paths. Let f ′ be the flow obtained by decreasing the flow

values on the edges along P to 0. This new flow f ′ has value ν − 1, and it has

fewer edges that carry flow. Applying the induction hypothesis for f ′, we get

ν − 1 edge-disjoint paths, which, along with path P, form the ν paths claimed.

If P reaches a node v for the second time, then we have a situation like

the one pictured in Figure 7.12. (The edges in the figure all carry one unit of

flow, and the dashed edges indicate the path traversed so far, which has just

reached a node v for the second time.) In this case, we can make progress in

a different way.

Consider the cycle C of edges visited between the first and second appear-

ances of v. We obtain a new flow f ′ from f by decreasing the flow values on

the edges along C to 0. This new flow f ′ has value ν, but it has fewer edges that

carry flow. Applying the induction hypothesis for f ′, we get the ν edge-disjoint

paths as claimed.

376 Chapter 7 Network Flow

P

v

s

t

Flow around a cycle
can be zeroed out.

Figure 7.12 The edges in the figure all carry one unit of flow. The path P of dashed

edges is one possible path in the proof of (7.42).

We can summarize (7.41) and (7.42) in the following result.

(7.43) There are k edge-disjoint paths in a directed graph G from s to t if and

only if the value of the maximum value of an s-t flow in G is at least k.

Notice also how the proof of (7.42) provides an actual procedure for

constructing the k paths, given an integer-valued maximum flow in G. This

procedure is sometimes referred to as a path decomposition of the flow, since it

“decomposes” the flow into a constituent set of paths. Hence we have shown

that our flow-based algorithm finds the maximum number of edge-disjoint s-t

paths and also gives us a way to construct the actual paths.

Bounding the Running Time For this flow problem, C =
∑

e out of s ce ≤

|V| = n, as there are at most |V| edges out of s, each of which has capac-

ity 1. Thus, by using the O(mC) bound in (7.5), we get an integer maximum

flow in O(mn) time.

The path decomposition procedure in the proof of (7.42), which produces

the paths themselves, can also be made to run in O(mn) time. To see this, note

that this procedure, with a little care, can produce a single path from s to t

using at most constant work per edge in the graph, and hence in O(m) time.

Since there can be at most n − 1 edge-disjoint paths from s to t (each must

use a different edge out of s), it therefore takes time O(mn) to produce all the

paths.

In summary, we have shown

(7.44) The Ford-Fulkerson Algorithm can be used to find a maximum set of

edge-disjoint s-t paths in a directed graph G in O(mn) time.

A Version of the Max-Flow Min-Cut Theorem for Disjoint Paths The Max-

Flow Min-Cut Theorem (7.13) can be used to give the following characteri-

7.6 Disjoint Paths in Directed and Undirected Graphs 377

zation of the maximum number of edge-disjoint s-t paths. We say that a set

F ⊆ E of edges separates s from t if, after removing the edges F from the graph

G, no s-t paths remain in the graph.

(7.45) In every directed graph with nodes s and t, the maximum number of

edge-disjoint s-t paths is equal to the minimum number of edges whose removal

separates s from t.

Proof. If the removal of a set F ⊆ E of edges separates s from t, then each s-t

path must use at least one edge from F , and hence the number of edge-disjoint

s-t paths is at most |F |.

To prove the other direction, we will use the Max-Flow Min-Cut Theorem

(7.13). By (7.43) the maximum number of edge-disjoint paths is the value ν

of the maximum s-t flow. Now (7.13) states that there is an s-t cut (A, B) with

capacity ν. Let F be the set of edges that go from A to B. Each edge has capacity

1, so |F | = ν and, by the definition of an s-t cut, removing these ν edges from

G separates s from t.

This result, then, can be viewed as the natural special case of the Max-

Flow Min-Cut Theorem in which all edge capacities are equal to 1. In fact,

this special case was proved by Menger in 1927, much before the full Max-

Flow Min-Cut Theorem was formulated and proved; for this reason, (7.45)

is often called Menger’s Theorem. If we think about it, the proof of Hall’s

Theorem (7.40) for bipartite matchings involves a reduction to a graph with

unit-capacity edges, and so it can be proved using Menger’s Theorem rather

than the general Max-Flow Min-Cut Theorem. In other words, Hall’s Theorem

is really a special case of Menger’s Theorem, which in turn is a special case

of the Max-Flow Min-Cut Theorem. And the history follows this progression,

since they were discovered in this order, a few decades apart.2

Extensions: Disjoint Paths in Undirected Graphs

Finally, we consider the disjoint paths problem in an undirected graph G.

Despite the fact that our graph G is now undirected, we can use the maximum-

flow algorithm to obtain edge-disjoint paths in G. The idea is quite simple: We

replace each undirected edge (u, v) in G by two directed edges (u, v) and

2 In fact, in an interesting retrospective written in 1981, Menger relates his version of the story of how

he first explained his theorem to König, one of the independent discoverers of Hall’s Theorem. You

might think that König, having thought a lot about these problems, would have immediately grasped

why Menger’s generalization of his theorem was true, and perhaps even considered it obvious. But, in

fact, the opposite happened; König didn’t believe it could be right and stayed up all night searching

for a counterexample. The next day, exhausted, he sought out Menger and asked him for the proof.

378 Chapter 7 Network Flow

(v, u), and in this way create a directed version G′ of G. (We may delete the

edges into s and out of t, since they are not useful.) Now we want to use the

Ford-Fulkerson Algorithm in the resulting directed graph. However, there is an

important issue we need to deal with first. Notice that two paths P1 and P2 may

be edge-disjoint in the directed graph and yet share an edge in the undirected

graph G: This happens if P1 uses directed edge (u, v) while P2 uses edge (v, u).

However, it is not hard to see that there always exists a maximum flow in any

network that uses at most one out of each pair of oppositely directed edges.

(7.46) In any flow network, there is a maximum flow f where for all opposite

directed edges e = (u, v) and e′ = (v, u), either f (e) = 0 or f (e′) = 0. If the

capacities of the flow network are integral, then there also is such an integral

maximum flow.

Proof. We consider any maximum flow f , and we modify it to satisfy the

claimed condition. Assume e = (u, v) and e′ = (v, u) are opposite directed

edges, and f (e) �= 0, f (e′) �= 0. Let δ be the smaller of these values, and modify

f by decreasing the flow value on both e and e′ by δ. The resulting flow f ′ is

feasible, has the same value as f , and its value on one of e and e′ is 0.

Now we can use the Ford-Fulkerson Algorithm and the path decomposition

procedure from (7.42) to obtain edge-disjoint paths in the undirected graph G.

(7.47) There are k edge-disjoint paths in an undirected graph G from s to t

if and only if the maximum value of an s-t flow in the directed version G′ of G

is at least k. Furthermore, the Ford-Fulkerson Algorithm can be used to find a

maximum set of disjoint s-t paths in an undirected graph G in O(mn) time.

The undirected analogue of (7.45) is also true, as in any s-t cut, at most

one of the two oppositely directed edges can cross from the s-side to the t-

side of the cut (for if one crosses, then the other must go from the t-side to

the s-side).

(7.48) In every undirected graph with nodes s and t, the maximum number of

edge-disjoint s-t paths is equal to the minimum number of edges whose removal

separates s from t.

7.7 Extensions to the Maximum-Flow Problem
Much of the power of the Maximum-Flow Problem has essentially nothing to

do with the fact that it models traffic in a network. Rather, it lies in the fact

that many problems with a nontrivial combinatorial search component can

7.7 Extensions to the Maximum-Flow Problem 379

be solved in polynomial time because they can be reduced to the problem of

finding a maximum flow or a minimum cut in a directed graph.

Bipartite Matching is a natural first application in this vein; in the coming

sections, we investigate a range of further applications. To begin with, we

stay with the picture of flow as an abstract kind of “traffic,” and look for

more general conditions we might impose on this traffic. These more general

conditions will turn out to be useful for some of our further applications.

In particular, we focus on two generalizations of maximum flow. We will

see that both can be reduced to the basic Maximum-Flow Problem.

The Problem: Circulations with Demands

One simplifying aspect of our initial formulation of the Maximum-Flow Prob-

lem is that we had only a single source s and a single sink t. Now suppose

that there can be a set S of sources generating flow, and a set T of sinks that

can absorb flow. As before, there is an integer capacity on each edge.

With multiple sources and sinks, it is a bit unclear how to decide which

source or sink to favor in a maximization problem. So instead of maximizing

the flow value, we will consider a problem where sources have fixed supply

values and sinks have fixed demand values, and our goal is to ship flow

from nodes with available supply to those with given demands. Imagine, for

example, that the network represents a system of highways or railway lines in

which we want to ship products from factories (which have supply) to retail

outlets (which have demand). In this type of problem, we will not be seeking to

maximize a particular value; rather, we simply want to satisfy all the demand

using the available supply.

Thus we are given a flow network G = (V , E) with capacities on the edges.

Now, associated with each node v ∈ V is a demand dv. If dv > 0, this indicates

that the node v has a demand of dv for flow; the node is a sink, and it wishes

to receive dv units more flow than it sends out. If dv < 0, this indicates that v

has a supply of −dv; the node is a source, and it wishes to send out −dv units

more flow than it receives. If dv = 0, then the node v is neither a source nor a

sink. We will assume that all capacities and demands are integers.

We use S to denote the set of all nodes with negative demand and T to

denote the set of all nodes with positive demand. Although a node v in S wants

to send out more flow than it receives, it will be okay for it to have flow that

enters on incoming edges; it should just be more than compensated by the flow

that leaves v on outgoing edges. The same applies (in the opposite direction)

to the set T.

380 Chapter 7 Network Flow

(a) (b)

3

2

–3

4

2–3

1

3

2

2
2

2
2

2

3

2

–3

4

2–3

t*

1

3

2

2

2

2
2

s*

3
3

2
2

2

3 3

4 4

Figure 7.13 (a) An instance of theCirculation Problem togetherwith a solution: Numbers

inside the nodes are demands; numbers labeling the edges are capacities and flow

values, with the flow values inside boxes. (b) The result of reducing this instance to an

equivalent instance of the Maximum-Flow Problem.

In this setting, we say that a circulation with demands {dv} is a function f

that assigns a nonnegative real number to each edge and satisfies the following

two conditions.

(i) (Capacity conditions) For each e ∈ E, we have 0 ≤ f (e) ≤ ce.

(ii) (Demand conditions) For each v ∈ V, we have v, f in(v) − f out(v) = dv.

Now, instead of considering a maximization problem, we are concerned with

a feasibility problem: We want to know whether there exists a circulation that

meets conditions (i) and (ii).

For example, consider the instance in Figure 7.13(a). Two of the nodes

are sources, with demands −3 and −3; and two of the nodes are sinks, with

demands 2 and 4. The flow values in the figure constitute a feasible circulation,

indicating how all demands can be satisfied while respecting the capacities.

If we consider an arbitrary instance of the Circulation Problem, here is a

simple condition that must hold in order for a feasible circulation to exist: The

total supply must equal the total demand.

(7.49) If there exists a feasible circulation with demands {dv}, then
∑

v dv = 0.

Proof. Suppose there exists a feasible circulation f in this setting. Then
∑

v dv =
∑

v f in(v) − f out(v). Now, in this latter expression, the value f (e) for

each edge e = (u, v) is counted exactly twice: once in f out(u) and once in f in(v).

These two terms cancel out; and since this holds for all values f (e), the overall

sum is 0.

7.7 Extensions to the Maximum-Flow Problem 381

u v

S

s*

T

t*

t* siphons flow
out of sinks.

s* supplies sources
with flow.

Figure 7.14 Reducing the Circulation Problem to the Maximum-Flow Problem.

Thanks to (7.49), we know that
∑

v:dv>0

dv =
∑

v:dv<0

−dv.

Let D denote this common value.

Designing and Analyzing an Algorithm for Circulations

It turns out that we can reduce the problem of finding a feasible circulation

with demands {dv} to the problem of finding a maximum s-t flow in a different

network, as shown in Figure 7.14.

The reduction looks very much like the one we used for Bipartite Matching:

we attach a “super-source” s∗ to each node in S, and a “super-sink” t∗ to each

node in T. More specifically, we create a graph G′ from G by adding new nodes

s∗ and t∗ to G. For each node v ∈ T—that is, each node v with dv > 0—we add

an edge (v, t∗) with capacity dv. For each node u ∈ S—that is, each node with

du < 0—we add an edge (s∗, u) with capacity −du. We carry the remaining

structure of G over to G′ unchanged.

In this graph G′, we will be seeking a maximum s∗-t∗ flow. Intuitively,

we can think of this reduction as introducing a node s∗ that “supplies” all the

sources with their extra flow, and a node t∗ that “siphons” the extra flow out

of the sinks. For example, part (b) of Figure 7.13 shows the result of applying

this reduction to the instance in part (a).

Note that there cannot be an s∗-t∗ flow in G′ of value greater than D, since

the cut (A, B) with A = {s∗} only has capacity D. Now, if there is a feasible

circulation f with demands {dv} in G, then by sending a flow value of −dv on

each edge (s∗, v), and a flow value of dv on each edge (v, t∗), we obtain an s∗-

t∗ flow in G′ of value D, and so this is a maximum flow. Conversely, suppose

there is a (maximum) s∗-t∗ flow in G′ of value D. It must be that every edge

382 Chapter 7 Network Flow

out of s∗, and every edge into t∗, is completely saturated with flow. Thus, if

we delete these edges, we obtain a circulation f in G with f in(v) − f out(v) = dv

for each node v. Further, if there is a flow of value D in G′, then there is such

a flow that takes integer values.

In summary, we have proved the following.

(7.50) There is a feasible circulation with demands {dv} in G if and only if the

maximum s∗-t∗ flow in G′ has value D. If all capacities and demands in G are

integers, and there is a feasible circulation, then there is a feasible circulation

that is integer-valued.

At the end of Section 7.5, we used the Max-Flow Min-Cut Theorem to

derive the characterization (7.40) of bipartite graphs that do not have perfect

matchings. We can give an analogous characterization for graphs that do not

have a feasible circulation. The characterization uses the notion of a cut,

adapted to the present setting. In the context of circulation problems with

demands, a cut (A, B) is any partition of the node set V into two sets, with no

restriction on which side of the partition the sources and sinks fall. We include

the characterization here without a proof.

(7.51) The graph G has a feasible circulation with demands {dv} if and only

if for all cuts (A, B),
∑

v∈B

dv ≤ c(A, B).

It is important to note that our network has only a single “kind” of flow.

Although the flow is supplied from multiple sources, and absorbed at multiple

sinks, we cannot place restrictions on which source will supply the flow to

which sink; we have to let our algorithm decide this. A harder problem is

the Multicommodity Flow Problem; here sink ti must be supplied with flow

that originated at source si, for each i. We will discuss this issue further in

Chapter 11.

The Problem: Circulations with Demands and
Lower Bounds

Finally, let us generalize the previous problem a little. In many applications, we

not only want to satisfy demands at various nodes; we also want to force the

flow to make use of certain edges. This can be enforced by placing lower bounds

on edges, as well as the usual upper bounds imposed by edge capacities.

Consider a flow network G = (V , E) with a capacity ce and a lower bound

ℓe on each edge e. We will assume 0 ≤ ℓe ≤ ce for each e. As before, each node

v will also have a demand dv, which can be either positive or negative. We

will assume that all demands, capacities, and lower bounds are integers.

7.7 Extensions to the Maximum-Flow Problem 383

The given quantities have the same meaning as before, and now a lower

bound ℓe means that the flow value on e must be at least ℓe. Thus a circulation

in our flow network must satisfy the following two conditions.

(i) (Capacity conditions) For each e ∈ E, we have ℓe ≤ f (e) ≤ ce.

(ii) (Demand conditions) For every v ∈ V, we have f in(v) − f out(v) = dv.

As before, we wish to decide whether there exists a feasible circulation—one

that satisfies these conditions.

Designing and Analyzing an Algorithm with
Lower Bounds

Our strategy will be to reduce this to the problem of finding a circulation

with demands but no lower bounds. (We’ve seen that this latter problem, in

turn, can be reduced to the standard Maximum-Flow Problem.) The idea is

as follows. We know that on each edge e, we need to send at least ℓe units of

flow. So suppose that we define an initial circulation f0 simply by f0(e) = ℓe.

f0 satisfies all the capacity conditions (both lower and upper bounds); but it

presumably does not satisfy all the demand conditions. In particular,

f0
in(v) − f0

out(v) =
∑

e into v

ℓe −
∑

e out of v

ℓe.

Let us denote this quantity by Lv. If Lv = dv, then we have satisfied the

demand condition at v; but if not, then we need to superimpose a circulation

f1 on top of f0 that will clear the remaining “imbalance” at v. So we need

f1
in(v) − f1

out(v) = dv − Lv. And how much capacity do we have with which to

do this? Having already sent ℓe units of flow on each edge e, we have ce − ℓe

more units to work with.

These considerations directly motivate the following construction. Let the

graph G′ have the same nodes and edges, with capacities and demands, but

no lower bounds. The capacity of edge e will be ce − ℓe. The demand of node

v will be dv − Lv.

For example, consider the instance in Figure 7.15(a). This is the same as

the instance we saw in Figure 7.13, except that we have now given one of the

edges a lower bound of 2. In part (b) of the figure, we eliminate this lower

bound by sending two units of flow across the edge. This reduces the upper

bound on the edge and changes the demands at the two ends of the edge. In

the process, it becomes clear that there is no feasible circulation, since after

applying the construction there is a node with a demand of −5, and a total of

only four units of capacity on its outgoing edges.

We now claim that our general construction produces an equivalent in-

stance with demands but no lower bounds; we can therefore use our algorithm

for this latter problem.

384 Chapter 7 Network Flow

3 3

2

2 2

–3

4

2–3

Lower bound of 2

1 3

2

2 2

–1

4

2–5

(a) (b)

Eliminating a lower
bound from an edge

Figure 7.15 (a) An instance of the Circulation Problem with lower bounds: Numbers

inside the nodes are demands, and numbers labeling the edges are capacities. We also

assign a lower bound of 2 to one of the edges. (b) The result of reducing this instance

to an equivalent instance of the Circulation Problem without lower bounds.

(7.52) There is a feasible circulation in G if and only if there is a feasible

circulation in G′. If all demands, capacities, and lower bounds in G are integers,

and there is a feasible circulation, then there is a feasible circulation that is

integer-valued.

Proof. First suppose there is a circulation f ′ in G′. Define a circulation f in G

by f (e) = f ′(e) + ℓe. Then f satisfies the capacity conditions in G, and

f in(v) − f out(v) =
∑

e into v

(ℓe + f ′(e)) −
∑

e out of v

(ℓe + f ′(e)) = Lv + (dv − Lv) = dv,

so it satisfies the demand conditions in G as well.

Conversely, suppose there is a circulation f in G, and define a circulation

f ′ in G′ by f ′(e) = f (e) − ℓe. Then f ′ satisfies the capacity conditions in G′, and

(f ′)
in

(v) − (f ′)
out

(v) =
∑

e into v

(f (e) − ℓe) −
∑

e out of v

(f (e) − ℓe) = dv − Lv,

so it satisfies the demand conditions in G′ as well.

7.8 Survey Design
Many problems that arise in applications can, in fact, be solved efficiently by

a reduction to Maximum Flow, but it is often difficult to discover when such

a reduction is possible. In the next few sections, we give several paradigmatic

examples of such problems. The goal is to indicate what such reductions tend

7.8 Survey Design 385

to look like and to illustrate some of the most common uses of flows and cuts

in the design of efficient combinatorial algorithms. One point that will emerge

is the following: Sometimes the solution one wants involves the computation

of a maximum flow, and sometimes it involves the computation of a minimum

cut; both flows and cuts are very useful algorithmic tools.

We begin with a basic application that we call survey design, a simple

version of a task faced by many companies wanting to measure customer

satisfaction. More generally, the problem illustrates how the construction used

to solve the Bipartite Matching Problem arises naturally in any setting where

we want to carefully balance decisions across a set of options—in this case,

designing questionnaires by balancing relevant questions across a population

of consumers.

The Problem

A major issue in the burgeoning field of data mining is the study of consumer

preference patterns. Consider a company that sells k products and has a

database containing the purchase histories of a large number of customers.

(Those of you with “Shopper’s Club” cards may be able to guess how this data

gets collected.) The company wishes to conduct a survey, sending customized

questionnaires to a particular group of n of its customers, to try determining

which products people like overall.

Here are the guidelines for designing the survey.

. Each customer will receive questions about a certain subset of the

products.

. A customer can only be asked about products that he or she has pur-

chased.

. To make each questionnaire informative, but not too long so as to dis-

courage participation, each customer i should be asked about a number

of products between ci and c′
i.

. Finally, to collect sufficient data about each product, there must be

between pj and p′
j distinct customers asked about each product j.

More formally, the input to the Survey Design Problem consists of a bipartite

graph G whose nodes are the customers and the products, and there is an edge

between customer i and product j if he or she has ever purchased product j.

Further, for each customer i = 1, . . . , n, we have limits ci ≤ c′
i on the number

of products he or she can be asked about; for each product j = 1, . . . , k, we

have limits pj ≤ p′
j on the number of distinct customers that have to be asked

about it. The problem is to decide if there is a way to design a questionnaire

for each customer so as to satisfy all these conditions.

386 Chapter 7 Network Flow

s

i j

t

Customers Products

ci,c�i p j,p�j

0,1

Figure 7.16 The Survey Design Problem can be reduced to the problem of finding a

feasible circulation: Flow passes from customers (with capacity bounds indicating how

many questions they can be asked) to products (with capacity bounds indicating how

many questions should be asked about each product).

Designing the Algorithm

We will solve this problem by reducing it to a circulation problem on a flow

network G′ with demands and lower bounds as shown in Figure 7.16. To obtain

the graph G′ from G, we orient the edges of G from customers to products, add

nodes s and t with edges (s, i) for each customer i = 1, . . . , n, edges (j, t) for

each product j = 1, . . . , k, and an edge (t , s). The circulation in this network

will correspond to the way in which questions are asked. The flow on the edge

(s, i) is the number of products included on the questionnaire for customer i,

so this edge will have a capacity of c′
i and a lower bound of ci. The flow on the

edge (j, t) will correspond to the number of customers who were asked about

product j, so this edge will have a capacity of p′
j and a lower bound of pj. Each

edge (i, j) going from a customer to a product he or she bought has capacity

1, and 0 as the lower bound. The flow carried by the edge (t , s) corresponds

to the overall number of questions asked. We can give this edge a capacity of
∑

i c′
i and a lower bound of

∑

i ci. All nodes have demand 0.

Our algorithm is simply to construct this network G′ and check whether

it has a feasible circulation. We now formulate a claim that establishes the

correctness of this algorithm.

Analyzing the Algorithm

(7.53) The graph G′ just constructed has a feasible circulation if and only if

there is a feasible way to design the survey.

7.9 Airline Scheduling 387

Proof. The construction above immediately suggests a way to turn a survey

design into the corresponding flow. The edge (i, j) will carry one unit of flow

if customer i is asked about product j in the survey, and will carry no flow

otherwise. The flow on the edges (s, i) is the number of questions asked

from customer i, the flow on the edge (j, t) is the number of customers who

were asked about product j, and finally, the flow on edge (t , s) is the overall

number of questions asked. This flow satisfies the 0 demand, that is, there is

flow conservation at every node. If the survey satisfies these rules, then the

corresponding flow satisfies the capacities and lower bounds.

Conversely, if the Circulation Problem is feasible, then by (7.52) there

is a feasible circulation that is integer-valued, and such an integer-valued

circulation naturally corresponds to a feasible survey design. Customer i will

be surveyed about product j if and only if the edge (i, j) carries a unit of flow.

7.9 Airline Scheduling
The computational problems faced by the nation’s large airline carriers are

almost too complex to even imagine. They have to produce schedules for thou-

sands of routes each day that are efficient in terms of equipment usage, crew

allocation, customer satisfaction, and a host of other factors—all in the face

of unpredictable issues like weather and breakdowns. It’s not surprising that

they’re among the largest consumers of high-powered algorithmic techniques.

Covering these computational problems in any realistic level of detail

would take us much too far afield. Instead, we’ll discuss a “toy” problem that

captures, in a very clean way, some of the resource allocation issues that arise

in a context such as this. And, as is common in this book, the toy problem will

be much more useful for our purposes than the “real” problem, for the solution

to the toy problem involves a very general technique that can be applied in a

wide range of situations.

The Problem

Suppose you’re in charge of managing a fleet of airplanes and you’d like to

create a flight schedule for them. Here’s a very simple model for this. Your

market research has identified a set of m particular flight segments that would

be very lucrative if you could serve them; flight segment j is specified by four

parameters: its origin airport, its destination airport, its departure time, and

its arrival time. Figure 7.17(a) shows a simple example, consisting of six flight

segments you’d like to serve with your planes over the course of a single day:

(1) Boston (depart 6 A.M.) – Washington DC (arrive 7 A.M.)

(2) Philadelphia (depart 7 A.M.) – Pittsburgh (arrive 8 A.M.)

388 Chapter 7 Network Flow

BOS 6 DCA 7 LAS 5 SEA 6

PHL 7 PIT 8 SFO
2:15

SEA
3:15

DCA 8 LAX 11

PHL 11 SFO 2

BOS 6 DCA 7 LAS 5 SEA 6

PHL 7
PIT 8 SFO

2:15

SEA
3:15

DCA 8 LAX 11

PHL 11 SFO 2

(a)

(b)

Figure 7.17 (a) A small instance of our simple Airline Scheduling Problem. (b) An

expanded graph showing which flights are reachable from which others.

(3) Washington DC (depart 8 A.M.) – Los Angeles (arrive 11 A.M.)

(4) Philadelphia (depart 11 A.M.) – San Francisco (arrive 2 P.M.)

(5) San Francisco (depart 2:15 P.M.) – Seattle (arrive 3:15 P.M.)

(6) Las Vegas (depart 5 P.M.) – Seattle (arrive 6 P.M.)

Note that each segment includes the times you want the flight to serve as well

as the airports.

It is possible to use a single plane for a flight segment i, and then later for

a flight segment j, provided that

(a) the destination of i is the same as the origin of j, and there’s enough time

to perform maintenance on the plane in between; or

(b) you can add a flight segment in between that gets the plane from the

destination of i to the origin of j with adequate time in between.

For example, assuming an hour for intermediate maintenance time, you could

use a single plane for flights (1), (3), and (6) by having the plane sit in

Washington, DC, between flights (1) and (3), and then inserting the flight

7.9 Airline Scheduling 389

Los Angeles (depart 12 noon) – Las Vegas (1 P.M.)

in between flights (3) and (6).

Formulating the Problem We can model this situation in a very general

way as follows, abstracting away from specific rules about maintenance times

and intermediate flight segments: We will simply say that flight j is reachable

from flight i if it is possible to use the same plane for flight i, and then later

for flight j as well. So under our specific rules (a) and (b) above, we can

easily determine for each pair i, j whether flight j is reachable from flight

i. (Of course, one can easily imagine more complex rules for reachability.

For example, the length of maintenance time needed in (a) might depend on

the airport; or in (b) we might require that the flight segment you insert be

sufficiently profitable on its own.) But the point is that we can handle any

set of rules with our definition: The input to the problem will include not just

the flight segments, but also a specification of the pairs (i, j) for which a later

flight j is reachable from an earlier flight i. These pairs can form an arbitrary

directed acyclic graph.

The goal in this problem is to determine whether it’s possible to serve all

m flights on your original list, using at most k planes total. In order to do this,

you need to find a way of efficiently reusing planes for multiple flights.

For example, let’s go back to the instance in Figure 7.17 and assume we

have k = 2 planes. If we use one of the planes for flights (1), (3), and (6)

as proposed above, we wouldn’t be able to serve all of flights (2), (4), and

(5) with the other (since there wouldn’t be enough maintenance time in San

Francisco between flights (4) and (5)). However, there is a way to serve all six

flights using two planes, via a different solution: One plane serves flights (1),

(3), and (5) (splicing in an LAX–SFO flight), while the other serves (2), (4),

and (6) (splicing in PIT–PHL and SFO–LAS).

Designing the Algorithm

We now discuss an efficient algorithm that can solve arbitrary instances of

the Airline Scheduling Problem, based on network flow. We will see that flow

techniques adapt very naturally to this problem.

The solution is based on the following idea. Units of flow will correspond

to airplanes. We will have an edge for each flight, and upper and lower capacity

bounds of 1 on these edges to require that exactly one unit of flow crosses this

edge. In other words, each flight must be served by one of the planes. If (ui, vi)

is the edge representing flight i, and (uj , vj) is the edge representing flight j,

and flight j is reachable from flight i, then we will have an edge from vi to uj

390 Chapter 7 Network Flow

with capacity 1; in this way, a unit of flow can traverse (ui, vi) and then move

directly to (uj , vj). Such a construction of edges is shown in Figure 7.17(b).

We extend this to a flow network by including a source and sink; we now

give the full construction in detail. The node set of the underlying graph G is

defined as follows.

. For each flight i, the graph G will have the two nodes ui and vi.

. G will also have a distinct source node s and sink node t.

The edge set of G is defined as follows.

. For each i, there is an edge (ui, vi) with a lower bound of 1 and a capacity

of 1. (Each flight on the list must be served.)

. For each i and j so that flight j is reachable from flight i, there is an edge

(vi, uj) with a lower bound of 0 and a capacity of 1. (The same plane can

perform flights i and j.)

. For each i, there is an edge (s, ui) with a lower bound of 0 and a capacity

of 1. (Any plane can begin the day with flight i.)

. For each j, there is an edge (vj , t) with a lower bound of 0 and a capacity

of 1. (Any plane can end the day with flight j.)

. There is an edge (s, t) with lower bound 0 and capacity k. (If we have

extra planes, we don’t need to use them for any of the flights.)

Finally, the node s will have a demand of −k, and the node t will have a

demand of k. All other nodes will have a demand of 0.

Our algorithm is to construct the network G and search for a feasible

circulation in it. We now prove the correctness of this algorithm.

Analyzing the Algorithm

(7.54) There is a way to perform all flights using at most k planes if and only

if there is a feasible circulation in the network G.

Proof. First, suppose there is a way to perform all flights using k′ ≤ k planes.

The set of flights performed by each individual plane defines a path P in the

network G, and we send one unit of flow on each such path P. To satisfy the full

demands at s and t, we send k − k′ units of flow on the edge (s, t). The resulting

circulation satisfies all demand, capacity, and lower bound conditions.

Conversely, consider a feasible circulation in the network G. By (7.52),

we know that there is a feasible circulation with integer flow values. Suppose

that k′ units of flow are sent on edges other than (s, t). Since all other edges

have a capacity bound of 1, and the circulation is integer-valued, each such

edge that carries flow has exactly one unit of flow on it.

7.10 Image Segmentation 391

We now convert this to a schedule using the same kind of construction we

saw in the proof of (7.42), where we converted a flow to a collection of paths.

In fact, the situation is easier here since the graph has no cycles. Consider an

edge (s, ui) that carries one unit of flow. It follows by conservation that (ui, vi)

carries one unit of flow, and that there is a unique edge out of vi that carries

one unit of flow. If we continue in this way, we construct a path P from s to

t, so that each edge on this path carries one unit of flow. We can apply this

construction to each edge of the form (s, uj) carrying one unit of flow; in this

way, we produce k′ paths from s to t, each consisting of edges that carry one

unit of flow. Now, for each path P we create in this way, we can assign a single

plane to perform all the flights contained in this path.

Extensions: Modeling Other Aspects of the Problem

Airline scheduling consumes countless hours of CPU time in real life. We

mentioned at the beginning, however, that our formulation here is really a

toy problem; it ignores several obvious factors that would have to be taken

into account in these applications. First of all, it ignores the fact that a given

plane can only fly a certain number of hours before it needs to be temporarily

taken out of service for more significant maintenance. Second, we are making

up an optimal schedule for a single day (or at least for a single span of time) as

though there were no yesterday or tomorrow; in fact we also need the planes

to be optimally positioned for the start of day N + 1 at the end of day N. Third,

all these planes need to be staffed by flight crews, and while crews are also

reused across multiple flights, a whole different set of constraints operates here,

since human beings and airplanes experience fatigue at different rates. And

these issues don’t even begin to cover the fact that serving any particular flight

segment is not a hard constraint; rather, the real goal is to optimize revenue,

and so we can pick and choose among many possible flights to include in our

schedule (not to mention designing a good fare structure for passengers) in

order to achieve this goal.

Ultimately, the message is probably this: Flow techniques are useful for

solving problems of this type, and they are genuinely used in practice. Indeed,

our solution above is a general approach to the efficient reuse of a limited set

of resources in many settings. At the same time, running an airline efficiently

in real life is a very difficult problem.

7.10 Image Segmentation
A central problem in image processing is the segmentation of an image into

various coherent regions. For example, you may have an image representing

a picture of three people standing in front of a complex background scene. A

392 Chapter 7 Network Flow

natural but difficult goal is to identify each of the three people as coherent

objects in the scene.

The Problem

One of the most basic problems to be considered along these lines is that

of foreground/background segmentation: We wish to label each pixel in an

image as belonging to either the foreground of the scene or the background. It

turns out that a very natural model here leads to a problem that can be solved

efficiently by a minimum cut computation.

Let V be the set of pixels in the underlying image that we’re analyzing.

We will declare certain pairs of pixels to be neighbors, and use E to denote

the set of all pairs of neighboring pixels. In this way, we obtain an undirected

graph G = (V , E). We will be deliberately vague on what exactly we mean by

a “pixel,” or what we mean by the “neighbor” relation. In fact, any graph

G will yield an efficiently solvable problem, so we are free to define these

notions in any way that we want. Of course, it is natural to picture the pixels

as constituting a grid of dots, and the neighbors of a pixel to be those that are

directly adjacent to it in this grid, as shown in Figure 7.18(a).

s

t
(a) (b)

Figure 7.18 (a) A pixel graph. (b) A sketch of the corresponding flow graph. Not all

edges from the source or to the sink are drawn.

7.10 Image Segmentation 393

For each pixel i, we have a likelihood ai that it belongs to the foreground,

and a likelihood bi that it belongs to the background. For our purposes, we

will assume that these likelihood values are arbitrary nonnegative numbers

provided as part of the problem, and that they specify how desirable it is to

have pixel i in the background or foreground. Beyond this, it is not crucial

precisely what physical properties of the image they are measuring, or how

they were determined.

In isolation, we would want to label pixel i as belonging to the foreground

if ai > bi, and to the background otherwise. However, decisions that we

make about the neighbors of i should affect our decision about i. If many

of i’s neighbors are labeled “background,” for example, we should be more

inclined to label i as “background” too; this makes the labeling “smoother” by

minimizing the amount of foreground/background boundary. Thus, for each

pair (i, j) of neighboring pixels, there is a separation penalty pij ≥ 0 for placing

one of i or j in the foreground and the other in the background.

We can now specify our Segmentation Problem precisely, in terms of the

likelihood and separation parameters: It is to find a partition of the set of pixels

into sets A and B (foreground and background, respectively) so as to maximize

q(A, B) =
∑

i∈A

ai +
∑

j∈B

bj −
∑

(i, j)∈E
|A∩{i, j}|=1

pij.

Thus we are rewarded for having high likelihood values and penalized for

having neighboring pairs (i, j) with one pixel in A and the other in B. The

problem, then, is to compute an optimal labeling—a partition (A, B) that

maximizes q(A, B).

Designing and Analyzing the Algorithm

We notice right away that there is clearly a resemblance between the minimum-

cut problem and the problem of finding an optimal labeling. However, there

are a few significant differences. First, we are seeking to maximize an objective

function rather than minimizing one. Second, there is no source and sink in the

labeling problem; and, moreover, we need to deal with values ai and bi on the

nodes. Third, we have an undirected graph G, whereas for the minimum-cut

problem we want to work with a directed graph. Let’s address these problems

in order.

We deal with the fact that our Segmentation Problem is a maximization

problem through the following observation. Let Q =
∑

i(ai + bi). The sum
∑

i∈A ai +
∑

j∈B bj is the same as the sum Q −
∑

i∈A bi −
∑

j∈B aj, so we can

write

394 Chapter 7 Network Flow

q(A, B) = Q −
∑

i∈A

bi −
∑

j∈B

aj −
∑

(i, j)∈E
|A∩{i, j}|=1

pij.

Thus we see that the maximization of q(A, B) is the same problem as the

minimization of the quantity

q′(A, B) =
∑

i∈A

bi +
∑

j∈B

aj +
∑

(i, j)∈E
|A∩{i, j}|=1

pij.

As for the missing source and the sink, we work by analogy with our con-

structions in previous sections: We create a new “super-source” s to represent

the foreground, and a new “super-sink” t to represent the background. This

also gives us a way to deal with the values ai and bi that reside at the nodes

(whereas minimum cuts can only handle numbers associated with edges).

Specifically, we will attach each of s and t to every pixel, and use ai and bi to

define appropriate capacities on the edges between pixel i and the source and

sink respectively.

Finally, to take care of the undirected edges, we model each neighboring

pair (i, j) with two directed edges, (i, j) and (j, i), as we did in the undirected

Disjoint Paths Problem. We will see that this works very well here too, since

in any s-t cut, at most one of these two oppositely directed edges can cross

from the s-side to the t-side of the cut (for if one does, then the other must go

from the t-side to the s-side).

Specifically, we define the following flow network G′ = (V ′, E′) shown in

Figure 7.18(b). The node set V ′ consists of the set V of pixels, together with

two additional nodes s and t. For each neighboring pair of pixels i and j, we

add directed edges (i, j) and (j, i), each with capacity pij. For each pixel i, we

add an edge (s, i) with capacity ai and an edge (i, t) with capacity bi.

Now, an s-t cut (A, B) corresponds to a partition of the pixels into sets A

and B. Let’s consider how the capacity of the cut c(A, B) relates to the quantity

q′(A, B) that we are trying to minimize. We can group the edges that cross the

cut (A, B) into three natural categories.

. Edges (s, j), where j ∈ B; this edge contributes aj to the capacity of the

cut.

. Edges (i, t), where i ∈ A; this edge contributes bi to the capacity of the

cut.

. Edges (i, j) where i ∈ A and j ∈ B; this edge contributes pij to the capacity

of the cut.

Figure 7.19 illustrates what each of these three kinds of edges looks like relative

to a cut, on an example with four pixels.

7.10 Image Segmentation 395

u

v

w

x

t

s

bu

bv

ax

aw

puw

pvx

Figure 7.19 An s-t cut on a graph constructed from four pixels. Note how the three

types of terms in the expression for q′(A, B) are captured by the cut.

If we add up the contributions of these three kinds of edges, we get

c(A, B) =
∑

i∈A

bi +
∑

j∈B

aj +
∑

(i, j)∈E
|A∩{i, j}|=1

pij

= q′(A, B).

So everything fits together perfectly. The flow network is set up so that the

capacity of the cut (A, B) exactly measures the quantity q′(A, B): The three

kinds of edges crossing the cut (A, B), as we have just defined them (edges

from the source, edges to the sink, and edges involving neither the source nor

the sink), correspond to the three kinds of terms in the expression for q′(A, B).

Thus, if we want to minimize q′(A, B) (since we have argued earlier that

this is equivalent to maximizing q(A, B)), we just have to find a cut of minimum

capacity. And this latter problem, of course, is something that we know how

to solve efficiently.

Thus, through solving this minimum-cut problem, we have an optimal

algorithm in our model of foreground/background segmentation.

(7.55) The solution to the Segmentation Problem can be obtained by a

minimum-cut algorithm in the graph G′ constructed above. For a minimum

cut (A′, B′), the partition (A, B) obtained by deleting s∗ and t∗ maximizes the

segmentation value q(A, B).

396 Chapter 7 Network Flow

7.11 Project Selection
Large (and small) companies are constantly faced with a balancing act between

projects that can yield revenue, and the expenses needed for activities that can

support these projects. Suppose, for example, that the telecommunications

giant CluNet is assessing the pros and cons of a project to offer some new

type of high-speed access service to residential customers. Marketing research

shows that the service will yield a good amount of revenue, but it must be

weighed against some costly preliminary projects that would be needed in

order to make this service possible: increasing the fiber-optic capacity in the

core of their network, and buying a newer generation of high-speed routers.

What makes these types of decisions particularly tricky is that they interact

in complex ways: in isolation, the revenue from the high-speed access service

might not be enough to justify modernizing the routers; however, once the

company has modernized the routers, they’ll also be in a position to pursue

a lucrative additional project with their corporate customers; and maybe this

additional project will tip the balance. And these interactions chain together:

the corporate project actually would require another expense, but this in

turn would enable two other lucrative projects—and so forth. In the end, the

question is: Which projects should be pursued, and which should be passed

up? It’s a basic issue of balancing costs incurred with profitable opportunities

that are made possible.

The Problem

Here’s a very general framework for modeling a set of decisions such as this.

There is an underlying set P of projects, and each project i ∈ P has an associated

revenue pi, which can either be positive or negative. (In other words, each

of the lucrative opportunities and costly infrastructure-building steps in our

example above will be referred to as a separate project.) Certain projects are

prerequisites for other projects, and we model this by an underlying directed

acyclic graph G = (P , E). The nodes of G are the projects, and there is an edge

(i, j) to indicate that project i can only be selected if project j is selected as

well. Note that a project i can have many prerequisites, and there can be many

projects that have project j as one of their prerequisites. A set of projects A ⊆ P

is feasible if the prerequisite of every project in A also belongs to A: for each

i ∈ A, and each edge (i, j) ∈ E, we also have j ∈ A. We will refer to requirements

of this form as precedence constraints. The profit of a set of projects is defined

to be

profit(A) =
∑

i∈A

pi.

7.11 Project Selection 397

The Project Selection Problem is to select a feasible set of projects with maxi-

mum profit.

This problem also became a hot topic of study in the mining literature,

starting in the early 1960s; here it was called the Open-Pit Mining Problem.3

Open-pit mining is a surface mining operation in which blocks of earth are

extracted from the surface to retrieve the ore contained in them. Before the

mining operation begins, the entire area is divided into a set P of blocks,

and the net value pi of each block is estimated: This is the value of the ore

minus the processing costs, for this block considered in isolation. Some of

these net values will be positive, others negative. The full set of blocks has

precedence constraints that essentially prevent blocks from being extracted

before others on top of them are extracted. The Open-Pit Mining Problem is to

determine the most profitable set of blocks to extract, subject to the precedence

constraints. This problem falls into the framework of project selection—each

block corresponds to a separate project.

Designing the Algorithm

Here we will show that the Project Selection Problem can be solved by reducing

it to a minimum-cut computation on an extended graph G′, defined analogously

to the graph we used in Section 7.10 for image segmentation. The idea is to

construct G′ from G in such a way that the source side of a minimum cut in

G′ will correspond to an optimal set of projects to select.

To form the graph G′, we add a new source s and a new sink t to the graph

G as shown in Figure 7.20. For each node i ∈ P with pi > 0, we add an edge

(s, i) with capacity pi. For each node i ∈ P with pi < 0, we add an edge (i, t)

with capacity −pi. We will set the capacities on the edges in G later. However,

we can already see that the capacity of the cut ({s}, P ∪ {t}) is C =
∑

i∈P:pi>0 pi,

so the maximum-flow value in this network is at most C.

We want to ensure that if (A′, B′) is a minimum cut in this graph, then

A = A′−{s} obeys the precedence constraints; that is, if the node i ∈ A has

an edge (i, j) ∈ E, then we must have j ∈ A. The conceptually cleanest way

to ensure this is to give each of the edges in G capacity of ∞. We haven’t

previously formalized what an infinite capacity would mean, but there is no

problem in doing this: it is simply an edge for which the capacity condition

imposes no upper bound at all. The algorithms of the previous sections, as well

as the Max-Flow Min-Cut Theorem, carry over to handle infinite capacities.

However, we can also avoid bringing in the notion of infinite capacities by

3 In contrast to the field of data mining, which has motivated several of the problems we considered

earlier, we’re talking here about actual mining, where you dig things out of the ground.

398 Chapter 7 Network Flow

Projects

An
optimal
subset of
projects

Projects with
negative value

Projects with
positive value

t

Projects

s

t

s

Figure 7.20 The flow graph used to solve the Project Selection Problem. A possible

minimum-capacity cut is shown on the right.

simply assigning each of these edges a capacity that is “effectively infinite.” In

our context, giving each of these edges a capacity of C + 1 would accomplish

this: The maximum possible flow value in G′ is at most C, and so no minimum

cut can contain an edge with capacity above C. In the description below, it

will not matter which of these options we choose.

We can now state the algorithm: We compute a minimum cut (A′, B′) in

G′, and we declare A′−{s} to be the optimal set of projects. We now turn to

proving that this algorithm indeed gives the optimal solution.

Analyzing the Algorithm

First consider a set of projects A that satisfies the precedence constraints. Let

A′ = A ∪ {s} and B′ = (P−A) ∪ {t}, and consider the s-t cut (A′, B′). If the set

A satisfies the precedence constraints, then no edge (i, j) ∈ E crosses this cut,

as shown in Figure 7.20. The capacity of the cut can be expressed as follows.

7.11 Project Selection 399

(7.56) The capacity of the cut (A′, B′), as defined from a project set A

satisfying the precedence constraints, is c(A′, B′) = C −
∑

i∈A pi.

Proof. Edges of G′ can be divided into three categories: those corresponding

to the edge set E of G, those leaving the source s, and those entering the sink

t. Because A satisfies the precedence constraints, the edges in E do not cross

the cut (A′, B′), and hence do not contribute to its capacity. The edges entering

the sink t contribute
∑

i∈A and pi<0

−pi

to the capacity of the cut, and the edges leaving the source s contribute
∑

i �∈A and pi>0

pi.

Using the definition of C, we can rewrite this latter quantity as C−
∑

i∈A and pi>0 pi. The capacity of the cut (A′, B′) is the sum of these two terms,

which is

∑

i∈A and pi<0

(−pi) +

⎛

⎝C −
∑

i∈A and pi>0

pi

⎞

⎠ = C −
∑

i∈A

pi,

as claimed.

Next, recall that edges of G have capacity more than C =
∑

i∈P:pi>0 pi, and

so these edges cannot cross a cut of capacity at most C. This implies that such

cuts define feasible sets of projects.

(7.57) If (A′, B′) is a cut with capacity at most C, then the set A = A′−{s}

satisfies the precedence constraints.

Now we can prove the main goal of our construction, that the minimum

cut in G′ determines the optimum set of projects. Putting the previous two

claims together, we see that the cuts (A′, B′) of capacity at most C are in one-

to-one correspondence with feasible sets of project A = A′−{s}. The capacity

of such a cut (A′, B′) is

c(A′, B′) = C − profit(A).

The capacity value C is a constant, independent of the cut (A′, B′), so the cut

with minimum capacity corresponds to the set of projects A with maximum

profit. We have therefore proved the following.

(7.58) If (A′, B′) is a minimum cut in G′ then the set A = A′−{s} is an

optimum solution to the Project Selection Problem.

400 Chapter 7 Network Flow

7.12 Baseball Elimination
Over on the radio side the producer’s saying, “See that thing in the

paper last week about Einstein? . . . Some reporter asked him to figure

out the mathematics of the pennant race. You know, one team wins so

many of their remaining games, the other teams win this number or

that number. What are the myriad possibilities? Who’s got the edge?”

“The hell does he know?”

“Apparently not much. He picked the Dodgers to eliminate the

Giants last Friday.”

—Don DeLillo, Underworld

The Problem

Suppose you’re a reporter for the Algorithmic Sporting News, and the following

situation arises late one September. There are four baseball teams trying to

finish in first place in the American League Eastern Division; let’s call them

New York, Baltimore, Toronto, and Boston. Currently, each team has the

following number of wins:

New York: 92, Baltimore: 91, Toronto: 91, Boston: 90.

There are five games left in the season: These consist of all possible pairings

of the four teams above, except for New York and Boston.

The question is: Can Boston finish with at least as many wins as every

other team in the division (that is, finish in first place, possibly in a tie)?

If you think about it, you realize that the answer is no. One argument is

the following. Clearly, Boston must win both its remaining games and New

York must lose both its remaining games. But this means that Baltimore and

Toronto will both beat New York; so then the winner of the Baltimore-Toronto

game will end up with the most wins.

Here’s an argument that avoids this kind of cases analysis. Boston can

finish with at most 92 wins. Cumulatively, the other three teams have 274

wins currently, and their three games against each other will produce exactly

three more wins, for a final total of 277. But 277 wins over three teams means

that one of them must have ended up with more than 92 wins.

So now you might start wondering: (i) Is there an efficient algorithm

to determine whether a team has been eliminated from first place? And (ii)

whenever a team has been eliminated from first place, is there an “averaging”

argument like this that proves it?

In more concrete notation, suppose we have a set S of teams, and for each

x ∈ S, its current number of wins is wx. Also, for two teams x, y ∈ S, they still

7.12 Baseball Elimination 401

have to play gxy games against one another. Finally, we are given a specific

team z.

We will use maximum-flow techniques to achieve the following two things.

First, we give an efficient algorithm to decide whether z has been eliminated

from first place—or, to put it in positive terms, whether it is possible to choose

outcomes for all the remaining games in such a way that the team z ends with

at least as many wins as every other team in S. Second, we prove the following

clean characterization theorem for baseball elimination—essentially, that there

is always a short “proof” when a team has been eliminated.

(7.59) Suppose that team z has indeed been eliminated. Then there exists a

“proof” of this fact of the following form:

. z can finish with at most m wins.

. There is a set of teams T ⊆ S so that
∑

x∈T

wx +
∑

x,y∈T

gxy > m|T|.

(And hence one of the teams in T must end with strictly more than m

wins.)

As a second, more complex illustration of how the averaging argument in

(7.59) works, consider the following example. Suppose we have the same four

teams as before, but now the current number of wins is

New York: 90, Baltimore: 88, Toronto: 87, Boston: 79.

The remaining games are as follows. Boston still has four games against each

of the other three teams. Baltimore has one more game against each of New

York and Toronto. And finally, New York and Toronto still have six games left

to play against each other. Clearly, things don’t look good for Boston, but is it

actually eliminated?

The answer is yes; Boston has been eliminated. To see this, first note

that Boston can end with at most 91 wins; and now consider the set of teams

T = {New York, Toronto}. Together New York and Toronto already have 177

wins; their six remaining games will result in a total of 183; and 183
2 > 91.

This means that one of them must end up with more than 91 wins, and so

Boston can’t finish in first. Interestingly, in this instance the set of all three

teams ahead of Boston cannot constitute a similar proof: All three teams taken

togeher have a total of 265 wins with 8 games left among them; this is a total

of 273, and 273
3 = 91 — not enough by itself to prove that Boston couldn’t end

up in a multi-way tie for first. So it’s crucial for the averaging argument that we

choose the set T consisting just of New York and Toronto, and omit Baltimore.

402 Chapter 7 Network Flow

Designing and Analyzing the Algorithm

We begin by constructing a flow network that provides an efficient algorithm

for determining whether z has been eliminated. Then, by examining the

minimum cut in this network, we will prove (7.59).

Clearly, if there’s any way for z to end up in first place, we should have

z win all its remaining games. Let’s suppose that this leaves it with m wins.

We now want to carefully allocate the wins from all remaining games so that

no other team ends with more than m wins. Allocating wins in this way can

be solved by a maximum-flow computation, via the following basic idea. We

have a source s from which all wins emanate. The ith win can pass through

one of the two teams involved in the ith game. We then impose a capacity

constraint saying that at most m − wx wins can pass through team x.

More concretely, we construct the following flow network G, as shown in

Figure 7.21. First, let S′ = S − {z}, and let g∗ =
∑

x,y∈S′ gxy—the total number

of games left between all pairs of teams in S′. We include nodes s and t, a

node vx for each team x ∈ S′, and a node uxy for each pair of teams x, y ∈ S′

with a nonzero number of games left to play against each other. We have the

following edges.

. Edges (s, uxy) (wins emanate from s);

. Edges (uxy, vx) and (uxy, vy) (only x or y can win a game that they play

against each other); and

. Edges (vx, t) (wins are absorbed at t).

Let’s consider what capacities we want to place on these edges. We want gxy

wins to flow from s to uxy at saturation, so we give (s, uxy) a capacity of gxy.

We want to ensure that team x cannot win more than m − wx games, so we

s t

NY–Tor NY

NY–Balt Tor

Balt–Tor Balt

6 1

1

1 4

3

The set T={NY, Toronto}
proves Boston is
eliminated.

Figure 7.21 The flow network for the second example. As the minimum cut indicates,

there is no flow of value g∗, and so Boston has been eliminated.

7.12 Baseball Elimination 403

give the edge (vx, t) a capacity of m − wx. Finally, an edge of the form (uxy, vy)

should have at least gxy units of capacity, so that it has the ability to transport

all the wins from uxy on to vx; in fact, our analysis will be the cleanest if we

give it infinite capacity. (We note that the construction still works even if this

edge is given only gxy units of capacity, but the proof of (7.59) will become a

little more complicated.)

Now, if there is a flow of value g∗, then it is possible for the outcomes

of all remaining games to yield a situation where no team has more than m

wins; and hence, if team z wins all its remaining games, it can still achieve at

least a tie for first place. Conversely, if there are outcomes for the remaining

games in which z achieves at least a tie, we can use these outcomes to define

a flow of value g∗. For example, in Figure 7.21, which is based on our second

example, the indicated cut shows that the maximum flow has value at most

7, whereas g∗ = 6 + 1+ 1= 8.

In summary, we have shown

(7.60) Team z has been eliminated if and only if the maximum flow in G

has value strictly less than g∗. Thus we can test in polynomial time whether z

has been eliminated.

Characterizing When a Team Has Been Eliminated

Our network flow construction can also be used to prove (7.59). The idea is that

the Max-Flow Min-Cut Theorem gives a nice “if and only if” characterization

for the existence of flow, and if we interpret this characterization in terms

of our application, we get the comparably nice characterization here. This

illustrates a general way in which one can generate characterization theorems

for problems that are reducible to network flow.

Proof of (7.59). Suppose that z has been eliminated from first place. Then

the maximum s-t flow in G has value g′ < g∗; so there is an s-t cut (A, B) of

capacity g′, and (A, B) is a minimum cut. Let T be the set of teams x for which

vx ∈ A. We will now prove that T can be used in the “averaging argument” in

(7.59).

First, consider the node uxy, and suppose one of x or y is not in T, but

uxy ∈ A. Then the edge (uxy, vx) would cross from A into B, and hence the

cut (A, B) would have infinite capacity. This contradicts the assumption that

(A, B) is a minimum cut of capacity less than g∗. So if one of x or y is not in

T, then uxy ∈ B. On the other hand, suppose both x and y belong to T, but

uxy ∈ B. Consider the cut (A′, B′) that we would obtain by adding uxy to the set

A and deleting it from the set B. The capacity of (A′, B′) is simply the capacity

of (A, B), minus the capacity gxy of the edge (s, uxy)—for this edge (s, uxy) used

404 Chapter 7 Network Flow

to cross from A to B, and now it does not cross from A′ to B′. But since gxy > 0,

this means that (A′, B′) has smaller capacity than (A, B), again contradicting

our assumption that (A, B) is a minimum cut. So, if both x and y belong to T,

then uxy ∈ A.

Thus we have established the following conclusion, based on the fact that

(A, B) is a minimum cut: uxy ∈ A if and only if both x, y ∈ T.

Now we just need to work out the minimum-cut capacity c(A, B) in terms

of its constituent edge capacities. By the conclusion in the previous paragraph,

we know that edges crossing from A to B have one of the following two forms:

. edges of the form (vx, t), where x ∈ T, and

. edges of the form (s, uxy), where at least one of x or y does not belong

to T (in other words, {x, y} �⊂ T).

Thus we have

c(A, B) =
∑

x∈T

(m − wx) +
∑

{x,y}�⊂T

gxy

= m|T| −
∑

x∈T

wx + (g∗ −
∑

x,y∈T

gxy).

Since we know that c(A, B) = g′ < g∗, this last inequality implies

m|T| −
∑

x∈T

wx −
∑

x,y∈T

gxy < 0,

and hence
∑

x∈T

wx +
∑

x,y∈T

gxy > m|T|.

For example, applying the argument in the proof of (7.59) to the instance

in Figure 7.21, we see that the nodes for New York and Toronto are on the

source side of the minimum cut, and, as we saw earlier, these two teams

indeed constitute a proof that Boston has been eliminated.

* 7.13 A Further Direction: Adding Costs to the
Matching Problem

Let’s go back to the first problem we discussed in this chapter, Bipartite

Matching. Perfect matchings in a bipartite graph formed a way to model the

problem of pairing one kind of object with another—jobs with machines, for

example. But in many settings, there are a large number of possible perfect

matchings on the same set of objects, and we’d like a way to express the idea

that some perfect matchings may be “better” than others.

7.13 A Further Direction: Adding Costs to the Matching Problem 405

The Problem

A natural way to formulate a problem based on this notion is to introduce

costs. It may be that we incur a certain cost to perform a given job on a given

machine, and we’d like to match jobs with machines in a way that minimizes

the total cost. Or there may be n fire trucks that must be sent to n distinct

houses; each house is at a given distance from each fire station, and we’d

like a matching that minimizes the average distance each truck drives to its

associated house. In short, it is very useful to have an algorithm that finds a

perfect matching of minimum total cost.

Formally, we consider a bipartite graph G = (V , E) whose node set, as

usual, is partitioned as V = X ∪ Y so that every edge e ∈ E has one end in X

and the other end in Y. Furthermore, each edge e has a nonnegative cost ce.

For a matching M, we say that the cost of the matching is the total cost of all

edges in M, that is, cost(M) =
∑

e∈M ce. The Minimum-Cost Perfect Matching

Problem assumes that |X| = |Y| = n, and the goal is to find a perfect matching

of minimum cost.

Designing and Analyzing the Algorithm

We now describe an efficient algorithm to solve this problem, based on the

idea of augmenting paths but adapted to take the costs into account. Thus, the

algorithm will iteratively construct matchings using i edges, for each value of i

from 1 to n. We will show that when the algorithm concludes with a matching

of size n, it is a minimum-cost perfect matching. The high-level structure of the

algorithm is quite simple. If we have a minimum-cost matching of size i, then

we seek an augmenting path to produce a matching of size i + 1; and rather

than looking for any augmenting path (as was sufficient in the case without

costs), we use the cheapest augmenting path so that the larger matching will

also have minimum cost.

Recall the construction of the residual graph used for finding augmenting

paths. Let M be a matching. We add two new nodes s and t to the graph. We

add edges (s, x) for all nodes x ∈ X that are unmatched and edges (y, t) for all

nodes y ∈ Y that are unmatched. An edge e = (x, y) ∈ E is oriented from x to

y if e is not in the matching M and from y to x if e ∈ M. We will use GM to

denote this residual graph. Note that all edges going from Y to X are in the

matching M, while the edges going from X to Y are not. Any directed s-t path

P in the graph GM corresponds to a matching one larger than M by swapping

edges along P, that is, the edges in P from X to Y are added to M and all edges

in P that go from Y to X are deleted from M. As before, we will call a path P in

GM an augmenting path, and we say that we augment the matching M using

the path P.

406 Chapter 7 Network Flow

Now we would like the resulting matching to have as small a cost as

possible. To achieve this, we will search for a cheap augmenting path with

respect to the following natural costs. The edges leaving s and entering t will

have cost 0; an edge e oriented from X to Y will have cost ce (as including this

edge in the path means that we add the edge to M); and an edge e oriented

from Y to X will have cost −ce (as including this edge in the path means that

we delete the edge from M). We will use cost(P) to denote the cost of a path

P in GM. The following statement summarizes this construction.

(7.61) Let M be a matching and P be a path in GM from s to t. Let M ′ be the

matching obtained from M by augmenting along P. Then |M ′| = |M| + 1 and

cost(M ′) = cost(M) + cost(P).

Given this statement, it is natural to suggest an algorithm to find a

minimum-cost perfect matching: We iteratively find minimum-cost paths in

GM, and use the paths to augment the matchings. But how can we be sure

that the perfect matching we find is of minimum cost? Or even worse, is this

algorithm even meaningful? We can only find minimum-cost paths if we know

that the graph GM has no negative cycles.

Analyzing Negative Cycles In fact, understanding the role of negative cycles

in GM is the key to analyzing the algorithm. First consider the case in which M

is a perfect matching. Note that in this case the node s has no leaving edges,

and t has no entering edges in GM (as our matching is perfect), and hence no

cycle in GM contains s or t.

(7.62) Let M be a perfect matching. If there is a negative-cost directed cycle

C in GM, then M is not minimum cost.

Proof. To see this, we use the cycle C for augmentation, just the same way

we used directed paths to obtain larger matchings. Augmenting M along C

involves swapping edges along C in and out of M. The resulting new perfect

matching M ′ has cost cost(M ′) = cost(M) + cost(C); but cost(C) < 0, and hence

M is not of minimum cost.

More importantly, the converse of this statement is true as well; so in fact

a perfect matching M has minimum cost precisely when there is no negative

cycle in GM.

(7.63) Let M be a perfect matching. If there are no negative-cost directed

cycles C in GM, then M is a minimum-cost perfect matching.

Proof. Suppose the statement is not true, and let M ′ be a perfect matching of

smaller cost. Consider the set of edges in one of M and M ′ but not in both.

7.13 A Further Direction: Adding Costs to the Matching Problem 407

Observe that this set of edges corresponds to a set of node-disjoint directed

cycles in GM. The cost of the set of directed cycles is exactly cost(M ′) − cost(M).

Assuming M ′ has smaller cost than M, it must be that at least one of these

cycles has negative cost.

Our plan is thus to iterate through matchings of larger and larger size,

maintaining the property that the graph GM has no negative cycles in any

iteration. In this way, our computation of a minimum-cost path will always

be well defined; and when we terminate with a perfect matching, we can use

(7.63) to conclude that it has minimum cost.

Maintaining Prices on the Nodes It will help to think about a numerical price

p(v) associated with each node v. These prices will help both in understanding

how the algorithm runs, and they will also help speed up the implementation.

One issue we have to deal with is to maintain the property that the graph

GM has no negative cycles in any iteration. How do we know that after an

augmentation, the new residual graph still has no negative cycles? The prices

will turn out to serve as a compact proof to show this.

To understand prices, it helps to keep in mind an economic interpretation

of them. For this purpose, consider the following scenario. Assume that the

set X represents people who need to be assigned to do a set of jobs Y. For an

edge e = (x, y), the cost ce is a cost associated with having person x doing job

y. Now we will think of the price p(x) as an extra bonus we pay for person x to

participate in this system, like a “signing bonus.” With this in mind, the cost

for assigning person x to do job y will become p(x) + ce. On the other hand,

we will think of the price p(y) for nodes y ∈ Y as a reward, or value gained by

taking care of job y (no matter which person in X takes care of it). This way

the “net cost” of assigning person x to do job y becomes p(x) + ce − p(y): this

is the cost of hiring x for a bonus of p(x), having him do job y for a cost of ce,

and then cashing in on the reward p(y). We will call this the reduced cost of an

edge e = (x, y) and denote it by c
p
e = p(x) + ce − p(y). However, it is important

to keep in mind that only the costs ce are part of the problem description; the

prices (bonuses and rewards) will be a way to think about our solution.

Specifically, we say that a set of numbers {p(v) : v ∈ V} forms a set of

compatible prices with respect to a matching M if

(i) for all unmatched nodes x ∈ X we have p(x) = 0 (that is, people not asked

to do any job do not need to be paid);

(ii) for all edges e = (x, y) we have p(x) + ce ≥ p(y) (that is, every edge has

a nonnegative reduced cost); and

(iii) for all edges e = (x, y) ∈ M we have p(x) + ce = p(y) (every edge used in

the assignment has a reduced cost of 0).

408 Chapter 7 Network Flow

Why are such prices useful? Intuitively, compatible prices suggest that the

matching is cheap: Along the matched edges reward equals cost, while on

all other edges the reward is no bigger than the cost. For a partial matching,

this may not imply that the matching has the smallest possible cost for its

size (it may be taking care of expensive jobs). However, we claim that if M

is any matching for which there exists a set of compatible prices, then GM

has no negative cycles. For a perfect matching M, this will imply that M is of

minimum cost by (7.63).

To see why GM can have no negative cycles, we extend the definition of

reduced cost to edges in the residual graph by using the same expression

c
p
e = p(v) + ce − p(w) for any edge e = (v, w). Observe that the definition

of compatible prices implies that all edges in the residual graph GM have

nonnegative reduced costs. Now, note that for any cycle C, we have

cost(C) =
∑

e∈C

ce =
∑

e∈C

cp
e ,

since all the terms on the right-hand side corresponding to prices cancel out.

We know that each term on the right-hand side is nonnegative, and so clearly

cost(C) is nonnegative.

There is a second, algorithmic reason why it is useful to have prices on

the nodes. When you have a graph with negative-cost edges but no negative

cycles, you can compute shortest paths using the Bellman-Ford Algorithm in

O(mn) time. But if the graph in fact has no negative-cost edges, then you can

use Dijkstra’s Algorithm instead, which only requires time O(m log n)—almost

a full factor of n faster.

In our case, having the prices around allows us to compute shortest paths

with respect to the nonnegative reduced costs c
p
e , arriving at an equivalent

answer. Indeed, suppose we use Dijkstra’s Algorithm to find the minimum

cost dp,M(v) of a directed path from s to every node v ∈ X ∪ Y subject to the

costs c
p
e . Given the minimum costs dp,M(y) for an unmatched node y ∈ Y, the

(nonreduced) cost of the path from s to t through y is dp,M(y) + p(y), and so

we find the minimum cost in O(n) additional time. In summary, we have the

following fact.

(7.64) Let M be a matching, and p be compatible prices. We can use one

run of Dijkstra’s Algorithm and O(n) extra time to find the minimum-cost path

from s to t.

Updating the Node Prices We took advantage of the prices to improve one

iteration of the algorithm. In order to be ready for the next iteration, we need

not only the minimum-cost path (to get the next matching), but also a way to

produce a set of compatible prices with respect to the new matching.

7.13 A Further Direction: Adding Costs to the Matching Problem 409

x

x�
e�

e

s ty

y�

Figure 7.22 A matching M (the dark edges), and a residual graph used to increase the

size of the matching.

To get some intuition on how to do this, consider an unmatched node x

with respect to a matching M, and an edge e = (x, y), as shown in Figure 7.22.

If the new matching M ′ includes edge e (that is, if e is on the augmenting

path we use to update the matching), then we will want to have the reduced

cost of this edge to be zero. However, the prices p we used with matching M

may result in a reduced cost c
p
e > 0 — that is, the assignment of person x to

job y, in our economic interpretation, may not be viewed as cheap enough.

We can arrange the zero reduced cost by either increasing the price p(y) (y’s

reward) by c
p
e , or by decreasing the price p(x) by the same amount. To keep

prices nonnegative, we will increase the price p(y). However, node y may be

matched in the matching M to some other node x′ via an edge e′ = (x′, y), as

shown in Figure 7.22. Increasing the reward p(y) decreases the reduced cost

of edge e′ to negative, and hence the prices are no longer compatible. To keep

things compatible, we can increase p(x′) by the same amount. However, this

change might cause problems on other edges. Can we update all prices and

keep the matching and the prices compatible on all edges? Surprisingly, this

can be done quite simply by using the distances from s to all other nodes

computed by Dijkstra’s Algorithm.

(7.65) Let M be a matching, let p be compatible prices, and let M ′ be a

matching obtained by augmenting along the minimum-cost path from s to t.

Then p′(v) = dp,M(v) + p(v) is a compatible set of prices for M ′.

Proof. To prove compatibility, consider first an edge e = (x′, y) ∈ M. The only

edge entering x′ is the directed edge (y, x′), and hence dp,M(x′) = dp,M(y) −

c
p
e , where c

p
e = p(y) + ce − p(x′), and thus we get the desired equation on

such edges. Next consider edges (x, y) in M ′−M. These edges are along the

minimum-cost path from s to t, and hence they satisfy dp,M(y) = dp,M(x) + c
p
e

as desired. Finally, we get the required inequality for all other edges since all

edges e = (x, y) �∈ M must satisfy dp,M(y) ≤ dp,M(x) + c
p
e .

410 Chapter 7 Network Flow

Finally, we have to consider how to initialize the algorithm, so as to get it

underway. We initialize M to be the empty set, define p(x) = 0 for all x ∈ X,

and define p(y), for y ∈ Y, to be the minimum cost of an edge entering y. Note

that these prices are compatible with respect to M = φ.

We summarize the algorithm below.

Start with M equal to the empty set

Define p(x) = 0 for x ∈ X, and p(y) = min
e into y

ce for y ∈ Y

While M is not a perfect matching

Find a minimum-cost s-t path P in GM using (7.64) with prices p

Augment along P to produce a new matching M ′

Find a set of compatible prices with respect to M ′ via (7.65)

Endwhile

The final set of compatible prices yields a proof that GM has no negative

cycles; and by (7.63), this implies that M has minimum cost.

(7.66) The minimum-cost perfect matching can be found in the time required

for n shortest-path computations with nonegative edge lengths.

Extensions: An Economic Interpretation of the Prices

To conclude our discussion of the Minimum-Cost Perfect Matching Problem,

we develop the economic interpretation of the prices a bit further. We consider

the following scenario. Assume X is a set of n people each looking to buy a

house, and Y is a set of n houses that they are all considering. Let v(x, y) denote

the value of house y to buyer x. Since each buyer wants one of the houses,

one could argue that the best arrangement would be to find a perfect matching

M that maximizes
∑

(x,y)∈M v(x, y). We can find such a perfect matching by

using our minimum-cost perfect matching algorithm with costs ce = −v(x, y)

if e = (x, y).

The question we will ask now is this: Can we convince these buyers to

buy the house they are allocated? On her own, each buyer x would want to

buy the house y that has maximum value v(x, y) to her. How can we convince

her to buy instead the house that our matching M allocated? We will use prices

to change the incentives of the buyers. Suppose we set a price P(y) for each

house y, that is, the person buying the house y must pay P(y). With these

prices in mind, a buyer will be interested in buying the house with maximum

net value, that is, the house y that maximizes v(x, y) − P(y). We say that a

Solved Exercises 411

perfect matching M and house prices P are in equilibrium if, for all edges

(x, y) ∈ M and all other houses y′, we have

v(x, y) − P(y) ≥ v(x, y′) − P(y′).

But can we find a perfect matching and a set of prices so as to achieve this

state of affairs, with every buyer ending up happy? In fact, the minimum-cost

perfect matching and an associated set of compatible prices provide exactly

what we’re looking for.

(7.67) Let M be a perfect matching of minimum cost, where ce = −v(x, y) for

each edge e = (x, y), and let p be a compatible set of prices. Then the matching

M and the set of prices {P(y) = −p(y) : y ∈ Y} are in equilibrium.

Proof. Consider an edge e = (x, y) ∈ M, and let e′ = (x, y′). Since M and p are

compatible, we have p(x) + ce = p(y) and p(x) + ce′ ≥ p(y′). Subtracting these

two inequalities to cancel p(x), and substituting the values of p and c, we get

the desired inequality in the definition of equilibrium.

Solved Exercises

Solved Exercise 1

Suppose you are given a directed graph G = (V , E), with a positive integer

capacity ce on each edge e, a designated source s ∈ V, and a designated sink

t ∈ V. You are also given an integer maximum s-t flow in G, defined by a flow

value fe on each edge e.

Now suppose we pick a specific edge e ∈ E and increase its capacity by

one unit. Show how to find a maximum flow in the resulting capacitated graph

in time O(m + n), where m is the number of edges in G and n is the number

of nodes.

Solution The point here is that O(m + n) is not enough time to compute a

new maximum flow from scratch, so we need to figure out how to use the flow

f that we are given. Intuitively, even after we add 1 to the capacity of edge e,

the flow f can’t be that far from maximum; after all, we haven’t changed the

network very much.

In fact, it’s not hard to show that the maximum flow value can go up by

at most 1.

(7.68) Consider the flow network G′ obtained by adding 1 to the capacity of

e. The value of the maximum flow in G′ is either ν(f) or ν(f) + 1.

412 Chapter 7 Network Flow

Proof. The value of the maximum flow in G′ is at least ν(f), since f is still a

feasible flow in this network. It is also integer-valued. So it is enough to show

that the maximum-flow value in G′ is at most ν(f) + 1.

By the Max-Flow Min-Cut Theorem, there is some s-t cut (A, B) in the

original flow network G of capacity ν(f). Now we ask: What is the capacity of

(A, B) in the new flow network G′? All the edges crossing (A, B) have the same

capacity in G′ that they did in G, with the possible exception of e (in case e

crosses (A, B)). But ce only increased by 1, and so the capacity of (A, B) in the

new flow network G′ is at most ν(f) + 1.

Statement (7.68) suggests a natural algorithm. Starting with the feasible

flow f in G′, we try to find a single augmenting path from s to t in the residual

graph G′
f
. This takes time O(m + n). Now one of two things will happen. Either

we will fail to find an augmenting path, and in this case we know that f is

a maximum flow. Otherwise the augmentation succeeds, producing a flow f ′

of value at least ν(f) + 1. In this case, we know by (7.68) that f ′ must be a

maximum flow. So either way, we produce a maximum flow after a single

augmenting path computation.

Solved Exercise 2

You are helping the medical consulting firm Doctors Without Weekends set up

the work schedules of doctors in a large hospital. They’ve got the regular daily

schedules mainly worked out. Now, however, they need to deal with all the

special cases and, in particular, make sure that they have at least one doctor

covering each vacation day.

Here’s how this works. There are k vacation periods (e.g., the week of

Christmas, the July 4th weekend, the Thanksgiving weekend, . . .), each

spanning several contiguous days. Let Dj be the set of days included in the

jth vacation period; we will refer to the union of all these days, ∪jDj, as the set

of all vacation days.

There are n doctors at the hospital, and doctor i has a set of vacation days

Si when he or she is available to work. (This may include certain days from a

given vacation period but not others; so, for example, a doctor may be able to

work the Friday, Saturday, or Sunday of Thanksgiving weekend, but not the

Thursday.)

Give a polynomial-time algorithm that takes this information and deter-

mines whether it is possible to select a single doctor to work on each vacation

day, subject to the following constraints.

Solved Exercises 413

. For a given parameter c, each doctor should be assigned to work at most

c vacation days total, and only days when he or she is available.

. For each vacation period j, each doctor should be assigned to work at

most one of the days in the set Dj. (In other words, although a particular

doctor may work on several vacation days over the course of a year, he or

she should not be assigned to work two or more days of the Thanksgiving

weekend, or two or more days of the July 4th weekend, etc.)

The algorithm should either return an assignment of doctors satisfying these

constraints or report (correctly) that no such assignment exists.

Solution This is a very natural setting in which to apply network flow, since

at a high level we’re trying to match one set (the doctors) with another set

(the vacation days). The complication comes from the requirement that each

doctor can work at most one day in each vacation period.

So to begin, let’s see how we’d solve the problem without that require-

ment, in the simpler case where each doctor i has a set Si of days when he or

she can work, and each doctor should be scheduled for at most c days total.

The construction is pictured in Figure 7.23(a). We have a node ui representing

each doctor attached to a node vℓ representing each day when he or she can

Doctors

Holidays

Sink SinkSource

Doctors

Gadgets

Holidays

(a) (b)

Source

Figure 7.23 (a) Doctors are assigned to holiday days without restricting how many

days in one holiday a doctor can work. (b) The flow network is expanded with “gadgets”

that prevent a doctor from working more than one day from each vacation period. The

shaded sets correspond to the different vacation periods.

414 Chapter 7 Network Flow

work; this edge has a capacity of 1. We attach a super-source s to each doctor

node ui by an edge of capacity c, and we attach each day node vℓ to a super-

sink t by an edge with upper and lower bounds of 1. This way, assigned days

can “flow” through doctors to days when they can work, and the lower bounds

on the edges from the days to the sink guarantee that each day is covered. Fi-

nally, suppose there are d vacation days total; we put a demand of +d on the

sink and −d on the source, and we look for a feasible circulation. (Recall that

once we’ve introduced lower bounds on some edges, the algorithms in the text

are phrased in terms of circulations with demands, not maximum flow.)

But now we have to handle the extra requirement, that each doctor can

work at most one day from each vacation period. To do this, we take each pair

(i, j) consisting of a doctor i and a vacation period j, and we add a “vacation

gadget” as follows. We include a new node wij with an incoming edge of

capacity 1 from the doctor node ui, and with outgoing edges of capacity 1 to

each day in vacation period j when doctor i is available to work. This gadget

serves to “choke off” the flow from ui into the days associated with vacation

period j, so that at most one unit of flow can go to them collectively. The

construction is pictured in Figure 7.23(b). As before, we put a demand of +d

on the sink and −d on the source, and we look for a feasible circulation. The

total running time is the time to construct the graph, which is O(nd), plus the

time to check for a single feasible circulation in this graph.

The correctness of the algorithm is a consequence of the following claim.

(7.69) There is a way to assign doctors to vacation days in a way that respects

all constraints if and only if there is a feasible circulation in the flow network

we have constructed.

Proof. First, if there is a way to assign doctors to vacation days in a way

that respects all constraints, then we can construct the following circulation.

If doctor i works on day ℓ of vacation period j, then we send one unit of

flow along the path s, ui, wij, vℓ, t; we do this for all such (i, ℓ) pairs. Since

the assignment of doctors satisfied all the constraints, the resulting circulation

respects all capacities; and it sends d units of flow out of s and into t, so it

meets the demands.

Conversely, suppose there is a feasible circulation. For this direction of

the proof, we will show how to use the circulation to construct a schedule

for all the doctors. First, by (7.52), there is a feasible circulation in which all

flow values are integers. We now construct the following schedule: If the edge

(wij , vℓ) carries a unit of flow, then we have doctor i work on day ℓ. Because

of the capacities, the resulting schedule has each doctor work at most c days,

at most one in each vacation period, and each day is covered by one doctor.

Exercises 415

1

1

v

u

ts

1

1

1

Figure 7.24 What are the

minimum s-t cuts in this flow

network?

2

4

v

u

ts

4

6

2

Figure 7.25 What is the min-

imum capacity of an s-t cut in

this flow network?

Exercises

1. (a) List all the minimum s-t cuts in the flow network pictured in Fig-

ure 7.24. The capacity of each edge appears as a label next to the

edge.

(b) What is the minimum capacity of an s-t cut in the flow network in

Figure 7.25? Again, the capacity of each edge appears as a label next

to the edge.

2. Figure 7.26 shows a flow network onwhich an s-t flow has been computed.

The capacity of each edge appears as a label next to the edge, and the

numbers in boxes give the amount of flow sent on each edge. (Edges

without boxed numbers—specifically, the four edges of capacity 3—have

no flow being sent on them.)

(a) What is the value of this flow? Is this a maximum (s,t) flow in this

graph?

(b) Find a minimum s-t cut in the flow network pictured in Figure 7.26,

and also say what its capacity is.

3. Figure 7.27 shows a flow network onwhich an s-t flow has been computed.

The capacity of each edge appears as a label next to the edge, and the

numbers in boxes give the amount of flow sent on each edge. (Edges

without boxed numbers have no flow being sent on them.)

(a) What is the value of this flow? Is this a maximum (s,t) flow in this

graph?

10

d

s t

5

10
5

5 5

5

5

3 3

8 8 8 810 8

3 3

Figure 7.26 What is the value of the depicted flow? Is it a maximum flow? What is the

minimum cut?

416 Chapter 7 Network Flow

10

1

a

d

s b c t

6 5
2 5

1

1 10

1

3

3

6

5

1 3 3

5

5

Figure 7.27 What is the value of the depicted flow? Is it a maximum flow? What is the

minimum cut?

(b) Find a minimum s-t cut in the flow network pictured in Figure 7.27,

and also say what its capacity is.

4. Decide whether you think the following statement is true or false. If it is

true, give a short explanation. If it is false, give a counterexample.

Let G be an arbitrary flow network, with a source s, a sink t, and a positive

integer capacity ce on every edge e. If f is a maximum s-t flow in G, then f

saturates every edge out of s with flow (i.e., for all edges e out of s, we have

f (e) = ce).

5. Decide whether you think the following statement is true or false. If it is

true, give a short explanation. If it is false, give a counterexample.

Let G be an arbitrary flow network, with a source s, a sink t, and a positive

integer capacity ce on every edge e; and let (A, B) be a mimimum s-t cut with

respect to these capacities {ce : e ∈ E}. Now suppose we add 1 to every capacity;

then (A, B) is still a minimum s-t cut with respect to these new capacities

{1+ ce : e ∈ E}.

6. Suppose you’re a consultant for the Ergonomic Architecture Commission,

and they come to you with the following problem.

They’re really concerned about designing houses that are “user-

friendly,” and they’ve been having a lot of trouble with the setup of light

fixtures and switches in newly designed houses. Consider, for example,

a one-floor house with n light fixtures and n locations for light switches

mounted in the wall. You’d like to be able to wire up one switch to control

each light fixture, in such a way that a person at the switch can see the

light fixture being controlled.

Exercises 417

a a

b b

c c

2

1

3 32

1

(a) Ergonomic (b) Not ergonomic

Figure 7.28 The floor plan in (a) is ergonomic, because we can wire switches to fixtures

in such a way that each fixture is visible from the switch that controls it. (This can be

done by wiring switch 1 to a, switch 2 to b, and switch 3 to c.) The floor plan in (b) is not

ergonomic, because no such wiring is possible.

Sometimes this is possible and sometimes it isn’t. Consider the two

simple floor plans for houses in Figure 7.28. There are three light fixtures

(labeled a, b, c) and three switches (labeled 1, 2, 3). It is possible to wire

switches to fixtures in Figure 7.28(a) so that every switch has a line of

sight to the fixture, but this is not possible in Figure 7.28(b).

Let’s call a floor plan, together with n light fixture locations and n

switch locations, ergonomic if it’s possible to wire one switch to each

fixture so that every fixture is visible from the switch that controls it.

A floor plan will be represented by a set of m horizontal or vertical

line segments in the plane (the walls), where the ith wall has endpoints

(xi, yi), (x′
i, y′

i). Each of the n switches and each of the n fixtures is given by

its coordinates in the plane. A fixture is visible from a switch if the line

segment joining them does not cross any of the walls.

Give an algorithm to decide if a given floor plan is ergonomic. The

running time should be polynomial in m and n. You may assume that you

have a subroutine with O(1) running time that takes two line segments as

input and decides whether or not they cross in the plane.

7. Consider a set of mobile computing clients in a certain town who each

need to be connected to one of several possible base stations. We’ll

suppose there are n clients, with the position of each client specified

by its (x, y) coordinates in the plane. There are also k base stations; the

position of each of these is specified by (x, y) coordinates as well.

For each client, we wish to connect it to exactly one of the base

stations. Our choice of connections is constrained in the following ways.

418 Chapter 7 Network Flow

There is a range parameter r—a client can only be connected to a base

station that is within distance r. There is also a load parameter L—no

more than L clients can be connected to any single base station.

Your goal is to design a polynomial-time algorithm for the following

problem. Given the positions of a set of clients and a set of base stations,

as well as the range and load parameters, decide whether every client can

be connected simultaneously to a base station, subject to the range and

load conditions in the previous paragraph.

8. Statistically, the arrival of spring typically results in increased accidents

and increased need for emergency medical treatment, which often re-

quires blood transfusions. Consider the problem faced by a hospital that

is trying to evaluate whether its blood supply is sufficient.

The basic rule for blood donation is the following. A person’s own

blood supply has certain antigens present (we can think of antigens as a

kind of molecular signature); and a person cannot receive blood with a

particular antigen if their own blood does not have this antigen present.

Concretely, this principle underpins the division of blood into four types:

A, B, AB, andO. Blood of type A has the A antigen, blood of type B has the B

antigen, blood of type AB has both, and blood of type O has neither. Thus,

patients with type A can receive only blood types A or O in a transfusion,

patients with type B can receive only B or O, patients with type O can

receive only O, and patients with type AB can receive any of the four

types.4

(a) Let sO, sA, sB, and sAB denote the supply in whole units of the different

blood types on hand. Assume that the hospital knows the projected

demand for each blood type dO, dA, dB, and dAB for the coming week.

Give a polynomial-time algorithm to evaluate if the blood on hand

would suffice for the projected need.

(b) Consider the following example. Over the next week, they expect to

need at most 100 units of blood. The typical distribution of blood

types in U.S. patients is roughly 45 percent type O, 42 percent type

A, 10 percent type B, and 3 percent type AB. The hospital wants to

know if the blood supply it has on hand would be enough if 100

patients arrive with the expected type distribution. There is a total

of 105 units of blood on hand. The table below gives these demands,

and the supply on hand.

4 The Austrian scientist Karl Landsteiner received the Nobel Prize in 1930 for his discovery of the

blood types A, B, O, and AB.

Exercises 419

blood type supply demand

O 50 45

A 36 42

B 11 8

AB 8 3

Is the 105 units of blood on hand enough to satisfy the 100 units

of demand? Find an allocation that satisfies the maximum possible

number of patients. Use an argument based on a minimum-capacity

cut to show why not all patients can receive blood. Also, provide an

explanation for this fact that would be understandable to the clinic

administrators, who have not taken a course on algorithms. (So, for

example, this explanation should not involve the words flow , cut , or

graph in the sense we use them in this book.)

9. Network flow issues come up in dealing with natural disasters and other

crises, since major unexpected events often require the movement and

evacuation of large numbers of people in a short amount of time.

Consider the following scenario. Due to large-scale flooding in a re-

gion, paramedics have identified a set of n injured people distributed

across the region who need to be rushed to hospitals. There are k hos-

pitals in the region, and each of the n people needs to be brought to a

hospital that is within a half-hour’s driving time of their current location

(so different people will have different options for hospitals, depending

on where they are right now).

At the same time, one doesn’t want to overload any one of the

hospitals by sending too many patients its way. The paramedics are in

touch by cell phone, and they want to collectively work out whether they

can choose a hospital for each of the injured people in such a way that

the load on the hospitals is balanced : Each hospital receives at most ⌈n/k⌉

people.

Give a polynomial-time algorithm that takes the given information

about the people’s locations and determines whether this is possible.

10. Suppose you are given a directed graph G = (V , E), with a positive integer

capacity ce on each edge e, a source s ∈ V, and a sink t ∈ V. You are also

given a maximum s-t flow in G, defined by a flow value fe on each edge

e. The flow f is acyclic: There is no cycle in G on which all edges carry

positive flow. The flow f is also integer-valued.

420 Chapter 7 Network Flow

Now suppose we pick a specific edge e∗ ∈ E and reduce its capacity

by 1 unit. Show how to find a maximum flow in the resulting capacitated

graph in time O(m + n), where m is the number of edges in G and n is the

number of nodes.

11. Your friends have written a very fast piece of maximum-flow code based

on repeatedly finding augmenting paths as in Section 7.1. However, after

you’ve looked at a bit of output from it, you realize that it’s not always

finding a flow of maximum value. The bug turns out to be pretty easy

to find; your friends hadn’t really gotten into the whole backward-edge

thing when writing the code, and so their implementation builds a variant

of the residual graph that only includes the forward edges. In other words,

it searches for s-t paths in a graph G̃f consisting only of edges e for which

f (e) < ce, and it terminates when there is no augmenting path consisting

entirely of such edges. We’ll call this the Forward-Edge-Only Algorithm.

(Note that we do not try to prescribe how this algorithm chooses its

forward-edge paths; it may choose them in any fashion it wants, provided

that it terminates only when there are no forward-edge paths.)

It’s hard to convince your friends they need to reimplement the

code. In addition to its blazing speed, they claim, in fact, that it never

returns a flow whose value is less than a fixed fraction of optimal. Do you

believe this? The crux of their claim can be made precise in the following

statement.

There is an absolute constant b > 1 (independent of the particular input

flow network), so that on every instance of the Maximum-Flow Problem, the

Forward-Edge-Only Algorithm is guaranteed to find a flow of value at least 1/b

times the maximum-flow value (regardless of how it chooses its forward-edge

paths).

Decide whether you think this statement is true or false, and give a proof

of either the statement or its negation.

12. Consider the following problem. You are given a flow network with unit-

capacity edges: It consists of a directed graph G = (V , E), a source s ∈ V,

and a sink t ∈ V; and ce = 1 for every e ∈ E. You are also given a parameter k.

The goal is to delete k edges so as to reduce the maximum s-t flow in

G by as much as possible. In other words, you should find a set of edges

F ⊆ E so that |F | = k and the maximum s-t flow in G′ = (V , E − F) is as small

as possible subject to this.

Give a polynomial-time algorithm to solve this problem.

13. In a standard s-t Maximum-Flow Problem, we assume edges have capaci-

ties, and there is no limit on how much flow is allowed to pass through a

Exercises 421

node. In this problem, we consider the variant of the Maximum-Flow and

Minimum-Cut problems with node capacities.

Let G = (V , E) be a directed graph, with source s ∈ V, sink t ∈ V, and

nonnegative node capacities {cv ≥ 0} for each v ∈ V. Given a flow f in this

graph, the flow though a node v is defined as f in(v). We say that a flow

is feasible if it satisfies the usual flow-conservation constraints and the

node-capacity constraints: f in(v) ≤ cv for all nodes.

Give a polynomial-time algorithm to find an s-t maximum flow in

such a node-capacitated network. Define an s-t cut for node-capacitated

networks, and show that the analogue of the Max-Flow Min-Cut Theorem

holds true.

14. We define the Escape Problem as follows. We are given a directed graph

G = (V , E) (picture a network of roads). A certain collection of nodes X ⊂ V

are designated as populated nodes, and a certain other collection S ⊂ V

are designated as safe nodes. (Assume that X and S are disjoint.) In case

of an emergency, we want evacuation routes from the populated nodes

to the safe nodes. A set of evacuation routes is defined as a set of paths

in G so that (i) each node in X is the tail of one path, (ii) the last node on

each path lies in S, and (iii) the paths do not share any edges. Such a set of

paths gives a way for the occupants of the populated nodes to “escape”

to S, without overly congesting any edge in G.

(a) Given G, X, and S, show how to decide in polynomial time whether

such a set of evacuation routes exists.

(b) Suppose we have exactly the same problem as in (a), but we want to

enforce an even stronger version of the “no congestion” condition

(iii). Thus we change (iii) to say “the paths do not share any nodes.”

With this new condition, show how to decide in polynomial time

whether such a set of evacuation routes exists.

Also, provide an example with the same G, X, and S, in which the

answer is yes to the question in (a) but no to the question in (b).

15. Suppose you and your friend Alanis live, together with n − 2 other people,

at a popular off-campus cooperative apartment, the Upson Collective.

Over the next n nights, each of you is supposed to cook dinner for the

co-op exactly once, so that someone cooks on each of the nights.

Of course, everyone has scheduling conflicts with some of the nights

(e.g., exams, concerts, etc.), so deciding who should cook on which night

becomes a tricky task. For concreteness, let’s label the people

{p1, . . . , pn},

422 Chapter 7 Network Flow

the nights

{d1, . . . , dn};

and for person pi, there’s a set of nights Si ⊂ {d1, . . . , dn} when they are

not able to cook.

A feasible dinner schedule is an assignment of each person in the co-

op to a different night, so that each person cooks on exactly one night,

there is someone cooking on each night, and if pi cooks on night dj, then

dj �∈ Si.

(a) Describe a bipartite graph G so that G has a perfect matching if and

only if there is a feasible dinner schedule for the co-op.

(b) Your friend Alanis takes on the task of trying to construct a feasible

dinner schedule. After great effort, she constructs what she claims

is a feasible schedule and then heads off to class for the day.

Unfortunately, when you look at the schedule she created, you

notice a big problem. n − 2 of the people at the co-op are assigned to

different nights on which they are available: no problem there. But

for the other two people, pi and pj, and the other two days, dk and

dℓ, you discover that she has accidentally assigned both pi and pj to

cook on night dk, and assigned no one to cook on night dℓ.

You want to fix Alanis’s mistake but without having to recom-

pute everything from scratch. Show that it’s possible, using her “al-

most correct” schedule, to decide in only O(n2) time whether there

exists a feasible dinner schedule for the co-op. (If one exists, you

should also output it.)

16. Back in the euphoric early days of the Web, people liked to claim that

much of the enormous potential in a company like Yahoo! was in the

“eyeballs”—the simple fact that millions of people look at its pages every

day. Further, by convincing people to register personal data with the site,

a site like Yahoo! can show each user an extremely targeted advertisement

whenever he or she visits the site, in a way that TV networks ormagazines

couldn’t hope to match. So if a user has told Yahoo! that he or she is a

20-year-old computer science major from Cornell University, the site can

present a banner ad for apartments in Ithaca, New York; on the other

hand, if he or she is a 50-year-old investment banker from Greenwich,

Connecticut, the site can display a banner ad pitching Lincoln Town Cars

instead.

But deciding on which ads to show to which people involves some

serious computation behind the scenes. Suppose that the managers

of a popular Web site have identified k distinct demographic groups

Exercises 423

G1, G2, . . . , Gk. (These groups can overlap; for example, G1 can be equal to

all residents of New York State, and G2 can be equal to all people with

a degree in computer science.) The site has contracts with m different

advertisers, to show a certain number of copies of their ads to users of

the site. Here’s what the contract with the ith advertiser looks like.

. For a subset Xi ⊆ {G1, . . . , Gk} of the demographic groups, advertiser

i wants its ads shown only to users who belong to at least one of the

demographic groups in the set Xi.

. For a number ri, advertiser i wants its ads shown to at least ri users

each minute.

Now consider the problem of designing a good advertising policy—

a way to show a single ad to each user of the site. Suppose at a given

minute, there are n users visiting the site. Because we have registration

information on each of these users, we know that user j (for j = 1, 2, . . . , n)

belongs to a subset Uj ⊆ {G1, . . . , Gk} of the demographic groups. The

problem is: Is there a way to show a single ad to each user so that the site’s

contracts with each of the m advertisers is satisfied for this minute? (That

is, for each i = 1, 2, . . . , m, can at least ri of the n users, each belonging

to at least one demographic group in Xi, be shown an ad provided by

advertiser i?)

Give an efficient algorithm to decide if this is possible, and if so, to

actually choose an ad to show each user.

17. You’ve been called in to help some network administrators diagnose the

extent of a failure in their network. The network is designed to carry

traffic from a designated source node s to a designated target node t, so

we will model the network as a directed graph G = (V , E), in which the

capacity of each edge is 1 and in which each node lies on at least one path

from s to t.

Now, when everything is running smoothly in the network, the max-

imum s-t flow in G has value k. However, the current situation (and the

reason you’re here) is that an attacker has destroyed some of the edges in

the network, so that there is now no path from s to t using the remaining

(surviving) edges. For reasons that we won’t go into here, they believe

the attacker has destroyed only k edges, the minimum number needed

to separate s from t (i.e., the size of a minimum s-t cut); and we’ll assume

they’re correct in believing this.

The network administrators are running a monitoring tool on node s,

which has the following behavior. If you issue the command ping(v), for

a given node v, it will tell you whether there is currently a path from s

to v. (So ping(t) reports that no path currently exists; on the other hand,

424 Chapter 7 Network Flow

y1

y2x1

x2

y3

y4

y5

Figure 7.29 An instance of

Coverage Expansion.

ping(s) always reports a path from s to itself.) Since it’s not practical to go

out and inspect every edge of the network, they’d like to determine the

extent of the failure using this monitoring tool, through judicious use of

the ping command.

So here’s the problem you face: Give an algorithm that issues a

sequence of ping commands to various nodes in the network and then

reports the full set of nodes that are not currently reachable from s. You

could do this by pinging every node in the network, of course, but you’d

like to do it using many fewer pings (given the assumption that only

k edges have been deleted). In issuing this sequence, your algorithm is

allowed to decide which node to ping next based on the outcome of earlier

ping operations.

Give an algorithm that accomplishes this task using only O(k log n)

pings.

18. We consider the Bipartite Matching Problem on a bipartite graph G =

(V , E). As usual, we say that V is partitioned into sets X and Y, and each

edge has one end in X and the other in Y.

If M is a matching in G, we say that a node y ∈ Y is covered by M if y

is an end of one of the edges in M.

(a) Consider the following problem. We are given G and a matching M in

G. For a given number k, we want to decide if there is a matching M ′

in G so that

(i) M ′ has k more edges than M does, and

(ii) every node y ∈ Y that is covered by M is also covered by M ′.

We call this the Coverage Expansion Problem, with input G, M, and k.

and we will say that M ′ is a solution to the instance.

Give a polynomial-time algorithm that takes an instance of Cov-

erage Expansion and either returns a solutionM ′ or reports (correctly)

that there is no solution. (You should include an analysis of the run-

ning time and a brief proof of why it is correct.)

Note: You may wish to also look at part (b) to help in thinking about

this.

Example. Consider Figure 7.29, and suppose M is the matching con-

sisting of the edge (x1, y2). Suppose we are asked the above question

with k = 1.

Then the answer to this instance of Coverage Expansion is yes.

We can let M ′ be the matching consisting (for example) of the two

edges (x1, y2) and (x2, y4); M ′ has one more edge than M, and y2 is still

covered by M ′.

Exercises 425

(b) Give an example of an instance of Coverage Expansion, specified by

G, M, and k, so that the following situation happens.

The instance has a solution; but in any solution M ′, the edges of M do

not form a subset of the edges of M ′.

(c) Let G be a bipartite graph, and let M be any matching in G. Consider

the following two quantities.

– K1 is the size of the largest matching M ′ so that every node y that

is covered by M is also covered by M ′.

– K2 is the size of the largest matching M ′′ in G.

Clearly K1 ≤ K2, since K2 is obtained by considering all possible match-

ings in G.

Prove that in fact K1 = K2; that is, we can obtain a maximum

matching even if we’re constrained to cover all the nodes covered

by our initial matching M.

19. You’ve periodically helped the medical consulting firm Doctors Without

Weekends on various hospital scheduling issues, and they’ve just come

to you with a new problem. For each of the next n days, the hospital has

determined the number of doctors they want on hand; thus, on day i,

they have a requirement that exactly pi doctors be present.

There are k doctors, and each is asked to provide a list of days on

which he or she is willing to work. Thus doctor j provides a set Lj of days

on which he or she is willing to work.

The system produced by the consulting firm should take these lists

and try to return to each doctor j a list L′
j with the following properties.

(A) L′
j is a subset of Lj, so that doctor j only works on days he or she finds

acceptable.

(B) If we consider the whole set of lists L′
1, . . . , L′

k
, it causes exactly pi

doctors to be present on day i, for i = 1, 2, . . . , n.

(a) Describe a polynomial-time algorithm that implements this system.

Specifically, give a polynomial-time algorithm that takes the num-

bers p1, p2, . . . , pn, and the lists L1, . . . , Lk, and does one of the fol-

lowing two things.

– Return lists L′
1, L′

2, . . . , L′
k
satisfying properties (A) and (B); or

– Report (correctly) that there is no set of lists L′
1, L′

2, . . . , L′
k
that

satisfies both properties (A) and (B).

(b) The hospital finds that the doctors tend to submit lists that aremuch

too restrictive, and so it often happens that the system reports (cor-

rectly, but unfortunately) that no acceptable set of lists L′
1, L′

2, . . . , L′
k

exists.

426 Chapter 7 Network Flow

Thus the hospital relaxes the requirements as follows. They add

a new parameter c > 0, and the system now should try to return to

each doctor j a list L′
j with the following properties.

(A*) L′
j contains at most c days that do not appear on the list Lj.

(B) (Same as before) If we consider the whole set of lists L′
1, . . . , L′

k
,

it causes exactly pi doctors to be present on day i, for i = 1, 2, . . . , n.

Describe a polynomial-time algorithm that implements this re-

vised system. It should take the numbers p1, p2, . . . , pn, the lists

L1, . . . , Lk, and the parameter c > 0, and do one of the following two

things.

– Return lists L′
1, L′

2, . . . , L′
k
satisfying properties (A∗) and (B); or

– Report (correctly) that there is no set of lists L′
1, L′

2, . . . , L′
k
that

satisfies both properties (A∗) and (B).

20. Your friends are involved in a large-scale atmospheric science experi-

ment. They need to get good measurements on a set S of n different

conditions in the atmosphere (such as the ozone level at various places),

and they have a set of m balloons that they plan to send up to make these

measurements. Each balloon can make at most two measurements.

Unfortunately, not all balloons are capable of measuring all condi-

tions, so for each balloon i = 1, . . . , m, they have a set Si of conditions

that balloon i canmeasure. Finally, tomake the results more reliable, they

plan to take each measurement from at least k different balloons. (Note

that a single balloon should not measure the same condition twice.) They

are having trouble figuring out which conditions to measure on which

balloon.

Example. Suppose that k = 2, there are n = 4 conditions labeled c1, c2, c3, c4,

and there are m = 4 balloons that can measure conditions, subject to

the limitation that S1 = S2 = {c1, c2, c3}, and S3 = S4 = {c1, c3, c4}. Then one

possible way to make sure that each condition is measured at least k = 2

times is to have

. balloon 1 measure conditions c1, c2,

. balloon 2 measure conditions c2, c3,

. balloon 3 measure conditions c3, c4, and

. balloon 4 measure conditions c1, c4.

(a) Give a polynomial-time algorithm that takes the input to an instance

of this problem (the n conditions, the sets Si for each of the m

balloons, and the parameter k) and decides whether there is a way to

measure each condition by k different balloons, while each balloon

only measures at most two conditions.

Exercises 427

(b) You show your friends a solution computed by your algorithm from

(a), and to your surprise they reply, “This won’t do at all—one of the

conditions is only being measured by balloons from a single subcon-

tractor.” You hadn’t heard anything about subcontractors before; it

turns out there’s an extra wrinkle they forgot to mention. . . .

Each of the balloons is produced by one of three different sub-

contractors involved in the experiment. A requirement of the exper-

iment is that there be no condition for which all k measurements

come from balloons produced by a single subcontractor.

For example, suppose balloon 1 comes from the first subcon-

tractor, balloons 2 and 3 come from the second subcontractor, and

balloon 4 comes from the third subcontractor. Then our previous so-

lution no longer works, as both of the measurements for condition

c3 were done by balloons from the second subcontractor. However,

we could use balloons 1 and 2 to each measure conditions c1, c2, and

use balloons 3 and 4 to each measure conditions c3, c4.

Explain how to modify your polynomial-time algorithm for part

(a) into a new algorithm that decides whether there exists a solution

satisfying all the conditions from (a), plus the new requirement about

subcontractors.

21. You’re helping to organize a class on campus that has decided to give all

its students wireless laptops for the semester. Thus there is a collection

of n wireless laptops; there is also have a collection of n wireless access

points, to which a laptop can connect when it is in range.

The laptops are currently scattered across campus; laptop ℓ is within

range of a set Sℓ of access points. Wewill assume that each laptop is within

range of at least one access point (so the sets Sℓ are nonempty); we will

also assume that every access point p has at least one laptop within range

of it.

To make sure that all the wireless connectivity software is working

correctly, you need to try having laptops make contact with access points

in such a way that each laptop and each access point is involved in at

least one connection. Thus we will say that a test set T is a collection of

ordered pairs of the form (ℓ, p), for a laptop ℓ and access point p, with

the properties that

(i) If (ℓ, p) ∈ T , then ℓ is within range of p (i.e., p ∈ Sℓ).

(ii) Each laptop appears in at least one ordered pair in T .

(iii) Each access point appears in at least one ordered pair in T .

428 Chapter 7 Network Flow

This way, by trying out all the connections specified by the pairs in T ,

we can be sure that each laptop and each access point have correctly

functioning software.

The problem is: Given the sets Sℓ for each laptop (i.e., which laptops

are within range of which access points), and a number k, decide whether

there is a test set of size at most k.

Example. Suppose that n = 3; laptop 1 is within range of access points 1

and 2; laptop 2 is within range of access point 2; and laptop 3 is within

range of access points 2 and 3. Then the set of pairs

(laptop 1, access point 1), (laptop 2, access point 2),

(laptop 3, access point 3)

would form a test set of size 3.

(a) Give an example of an instance of this problem for which there is no

test set of size n. (Recall that we assume each laptop is within range

of at least one access point, and each access point p has at least one

laptop within range of it.)

(b) Give a polynomial-time algorithm that takes the input to an instance

of this problem (including the parameter k) and decides whether

there is a test set of size at most k.

22. Let M be an n × n matrix with each entry equal to either 0 or 1. Let mij

denote the entry in row i and column j. A diagonal entry is one of the

form mii for some i.

Swapping rows i and j of the matrix M denotes the following action:

we swap the values mik and mjk for k = 1, 2, . . . , n. Swapping two columns

is defined analogously.

We say that M is rearrangeable if it is possible to swap some of the

pairs of rows and some of the pairs of columns (in any sequence) so that,

after all the swapping, all the diagonal entries of M are equal to 1.

(a) Give an example of a matrix M that is not rearrangeable, but for

which at least one entry in each row and each column is equal to 1.

(b) Give a polynomial-time algorithm that determines whether a matrix

M with 0-1 entries is rearrangeable.

23. Suppose you’re looking at a flow network G with source s and sink t, and

you want to be able to express something like the following intuitive no-

tion: Some nodes are clearly on the “source side” of the main bottlenecks;

some nodes are clearly on the “sink side” of the main bottlenecks; and

some nodes are in the middle. However, G can have many minimum cuts,

so we have to be careful in how we try making this idea precise.

Exercises 429

Here’s one way to divide the nodes of G into three categories of this

sort.

. We say a node v is upstream if, for all minimum s-t cuts (A, B), we

have v ∈ A—that is, v lies on the source side of every minimum cut.

. We say a node v is downstream if, for all minimum s-t cuts (A, B), we

have v ∈ B—that is, v lies on the sink side of every minimum cut.

. We say a node v is central if it is neither upstream nor downstream;

there is at least one minimum s-t cut (A, B) for which v ∈ A, and at

least one minimum s-t cut (A′, B′) for which v ∈ B′.

Give an algorithm that takes a flow network G and classifies each of

its nodes as being upstream, downstream, or central. The running time

of your algorithm should be within a constant factor of the time required

to compute a single maximum flow.

24. Let G = (V , E) be a directed graph, with source s ∈ V, sink t ∈ V, and

nonnegative edge capacities {ce}. Give a polynomial-time algorithm to

decide whether G has a unique minimum s-t cut (i.e., an s-t of capacity

strictly less than that of all other s-t cuts).

25. Suppose you live in a big apartment with a lot of friends. Over the

course of a year, there are many occasions when one of you pays for an

expense shared by some subset of the apartment, with the expectation

that everything will get balanced out fairly at the end of the year. For

example, one of you may pay the whole phone bill in a given month,

another will occasionally make communal grocery runs to the nearby

organic food emporium, and a third might sometimes use a credit card

to cover the whole bill at the local Italian-Indian restaurant, Little Idli.

In any case, it’s now the end of the year and time to settle up. There

are n people in the apartment; and for each ordered pair (i, j) there’s an

amount aij ≥ 0 that i owes j, accumulated over the course of the year. We

will require that for any two people i and j, at least one of the quantities

aij or aji is equal to 0. This can be easily made to happen as follows: If it

turns out that i owes j a positive amount x, and j owes i a positive amount

y < x, then we will subtract off y from both sides and declare aij = x − y

while aji = 0. In terms of all these quantities, we now define the imbalance

of a person i to be the sum of the amounts that i is owed by everyone

else, minus the sum of the amounts that i owes everyone else. (Note that

an imbalance can be positive, negative, or zero.)

In order to restore all imbalances to 0, so that everyone departs on

good terms, certain people will write checks to others; in other words, for

certain ordered pairs (i, j), i will write a check to j for an amount bij > 0.

430 Chapter 7 Network Flow

We will say that a set of checks constitutes a reconciliation if, for each

person i, the total value of the checks received by i, minus the total value

of the checks written by i, is equal to the imbalance of i. Finally, you and

your friends feel it is bad form for i to write j a check if i did not actually

owe j money, so we say that a reconciliation is consistent if, whenever i

writes a check to j, it is the case that aij > 0.

Show that, for any set of amounts aij, there is always a consistent

reconciliation in which at most n − 1 checks get written, by giving a

polynomial-time algorithm to compute such a reconciliation.

26. You can tell that cellular phones are at work in rural communities, from

the giant microwave towers you sometimes see sprouting out of corn

fields and cow pastures. Let’s consider a very simplified model of a

cellular phone network in a sparsely populated area.

We are given the locations of n base stations, specified as points

b1, . . . , bn in the plane. We are also given the locations of n cellular phones,

specified as points p1, . . . , pn in the plane. Finally, we are given a range

parameter � > 0. We call the set of cell phones fully connected if it is

possible to assign each phone to a base station in such a way that

. Each phone is assigned to a different base station, and

. If a phone at pi is assigned to a base station at bj, then the straight-line

distance between the points pi and bj is at most �.

Suppose that the owner of the cell phone at point p1 decides to go

for a drive, traveling continuously for a total of z units of distance due

east. As this cell phone moves, we may have to update the assignment of

phones to base stations (possibly several times) in order to keep the set

of phones fully connected.

Give a polynomial-time algorithm to decide whether it is possible to

keep the set of phones fully connected at all times during the travel of

this one cell phone. (You should assume that all other phones remain sta-

tionary during this travel.) If it is possible, you should report a sequence

of assignments of phones to base stations that will be sufficient in order

to maintain full connectivity; if it is not possible, you should report a

point on the traveling phone’s path at which full connectivity cannot be

maintained.

You should try to make your algorithm run in O(n3) time if possible.

Example. Suppose we have phones at p1 = (0, 0) and p2 = (2, 1); we have

base stations at b1 = (1, 1) and b2 = (3, 1); and � = 2. Now consider the case

in which the phone at p1 moves due east a distance of 4 units, ending at

(4, 0). Then it is possible to keep the phones fully connected during this

Exercises 431

motion: We begin by assigning p1 to b1 and p2 to b2, and we reassign p1 to

b2 and p2 to b1 during the motion (for example, when p1 passes the point

(2, 0)).

27. Some of your friends with jobs out West decide they really need some

extra time each day to sit in front of their laptops, and the morning

commute from Woodside to Palo Alto seems like the only option. So they

decide to carpool to work.

Unfortunately, they all hate to drive, so they want to make sure that

any carpool arrangement they agree upon is fair and doesn’t overload

any individual with too much driving. Some sort of simple round-robin

scheme is out, because none of them goes to work every day, and so the

subset of them in the car varies from day to day.

Here’s one way to define fairness. Let the people be labeled S =

{p1, . . . , pk}. We say that the total driving obligation of pj over a set of

days is the expected number of times that pj would have driven, had a

driver been chosen uniformly at random from among the people going

to work each day. More concretely, suppose the carpool plan lasts for d

days, and on the ith day a subset Si ⊆ S of the people go to work. Then the

above definition of the total driving obligation �j for pj can be written as

�j =
∑

i:pj∈Si

1
|Si|

. Ideally, we’d like to require that pj drives at most �j times;

unfortunately, �j may not be an integer.

So let’s say that a driving schedule is a choice of a driver for each

day—that is, a sequence pi1
, pi2

, . . . , pid
with pit

∈ St—and that a fair driving

schedule is one in which each pj is chosen as the driver on at most ⌈�j⌉

days.

(a) Prove that for any sequence of sets S1, . . . , Sd, there exists a fair

driving schedule.

(b) Give an algorithm to compute a fair driving schedule with running

time polynomial in k and d.

28. A group of students has decided to add some features to Cornell’s on-line

Course Management System (CMS), to handle aspects of course planning

that are not currently covered by the software. They’re beginning with a

module that helps schedule office hours at the start of the semester.

Their initial prototype works as follows. The office hour schedule will

be the same from one week to the next, so it’s enough to focus on the

scheduling problem for a single week. The course administrator enters

a collection of nonoverlapping one-hour time intervals I1, I2, . . . , Ik when

it would be possible for teaching assistants (TAs) to hold office hours;

the eventual office-hour schedule will consist of a subset of some, but

432 Chapter 7 Network Flow

generally not all, of these time slots. Then each of the TAs enters his or

her weekly schedule, showing the timeswhen he or shewould be available

to hold office hours.

Finally, the course administrator specifies, for parameters a, b, and

c, that they would like each TA to hold between a and b office hours per

week, and they would like a total of exactly c office hours to be held over

the course of the week.

The problem, then, is how to assign each TA to some of the office-

hour time slots, so that each TA is available for each of his or her office-

hour slots, and so that the right number of office hours gets held. (There

should be only one TA at each office hour.)

Example. Suppose there are five possible time slots for office hours:

I1 = Mon 3–4 P.M.; I2 = Tue 1–2 P.M.; I3 = Wed 10–11 A.M.; I4 = Wed 3–4

P.M.; and I5 = Thu 10–11 A.M..

There are two TAs; the first would be able to hold office hours at any

time on Monday or Wednesday afternoons, and the second would be able

to hold office hours at any time on Tuesday, Wednesday, or Thursday.

(In general, TA availability might be more complicated to specify than

this, but we’re keeping this example simple.) Finally, each TA should hold

between a = 1and b = 2office hours, andwewant exactly c = 3office hours

per week total.

One possible solution would be to have the first TA hold office hours

in time slot I1, and the second TA to hold office hours in time slots I2

and I5.

(a) Give a polynomial-time algorithm that takes the input to an instance

of this problem (the time slots, the TA schedules, and the parameters

a, b, and c) and does one of the following two things:

– Constructs a valid schedule for office hours, specifying which

TA will cover which time slots, or

– Reports (correctly) that there is no valid way to schedule office

hours.

(b) This office-hour scheduling feature becomes very popular, and so

course staffs begin to demand more. In particular, they observe that

it’s good to have a greater density of office hours closer to the due

date of a homework assignment.

So what they want to be able to do is to specify an office-hour

density parameter for each day of the week: The number di specifies

that they want to have at least di office hours on a given day i of the

week.

Exercises 433

For example, suppose that in our previous example, we add the

constraint that we want at least one office hour onWednesday and at

least one office hour on Thursday. Then the previous solution does

not work; but there is a possible solution in which we have the first

TA hold office hours in time slot I1, and the second TA hold office

hours in time slots I3 and I5. (Another solution would be to have the

first TA hold office hours in time slots I1 and I4, and the second TA

hold office hours in time slot I5.)

Give a polynomial-time algorithm that computes office-hour

schedules under this more complex set of constraints. The algo-

rithm should either construct a schedule or report (correctly) that

none exists.

29. Some of your friends have recently graduated and started a small com-

pany, which they are currently running out of their parents’ garages in

Santa Clara. They’re in the process of porting all their software from an

old system to a new, revved-up system; and they’re facing the following

problem.

They have a collection of n software applications, {1, 2, . . . , n}, run-

ning on their old system; and they’d like to port some of these to the new

system. If they move application i to the new system, they expect a net

(monetary) benefit of bi ≥ 0. The different software applications interact

with one another; if applications i and j have extensive interaction, then

the company will incur an expense if they move one of i or j to the new

system but not both; let’s denote this expense by xij ≥ 0.

So, if the situation were really this simple, your friends would just

port all n applications, achieving a total benefit of
∑

i bi. Unfortunately,

there’s a problem. . . .

Due to small but fundamental incompatibilities between the two

systems, there’s no way to port application 1 to the new system; it will

have to remain on the old system. Nevertheless, it might still pay off to

port some of the other applications, accruing the associated benefit and

incurring the expense of the interaction between applications on different

systems.

So this is the question they pose to you: Which of the remaining

applications, if any, should be moved? Give a polynomial-time algorithm

to find a set S ⊆ {2, 3, . . . , n} for which the sum of the benefits minus the

expenses of moving the applications in S to the new system is maximized.

30. Consider a variation on the previous problem. In the new scenario, any

application can potentially be moved, but now some of the benefits bi for

434 Chapter 7 Network Flow

moving to the new systemare in factnegative: If bi < 0, then it is preferable

(by an amount quantified in bi) to keep i on the old system. Again, give

a polynomial-time algorithm to find a set S ⊆ {1, 2, . . . , n} for which the

sum of the benefits minus the expenses of moving the applications in S

to the new system is maximized.

31. Some of your friends are interning at the small high-tech company Web-

Exodus. A running joke among the employees there is that the back room

has less space devoted to high-end servers than it does to empty boxes

of computer equipment, piled up in case something needs to be shipped

back to the supplier for maintainence.

A few days ago, a large shipment of computer monitors arrived, each

in its own large box; and since there are many different kinds of monitors

in the shipment, the boxes do not all have the same dimensions. A bunch

of people spent some time in the morning trying to figure out how to

store all these things, realizing of course that less space would be taken

up if some of the boxes could be nested inside others.

Suppose each box i is a rectangular parallelepiped with side lengths

equal to (i1, i2, i3); and suppose each side length is strictly between half a

meter and one meter. Geometrically, you know what it means for one box

to nest inside another: It’s possible if you can rotate the smaller so that

it fits inside the larger in each dimension. Formally, we can say that box

i with dimensions (i1, i2, i3) nests inside box j with dimensions (j1, j2, j3) if

there is a permutation a, b, c of the dimensions {1, 2, 3} so that ia < j1, and

ib < j2, and ic < j3. Of course, nesting is recursive: If i nests in j, and j nests

in k, then by putting i inside j inside k, only box k is visible. We say that

a nesting arrangement for a set of n boxes is a sequence of operations

in which a box i is put inside another box j in which it nests; and if there

were already boxes nested inside i, then these end up inside j as well.

(Also notice the following: Since the side lengths of i are more than half

a meter each, and since the side lengths of j are less than a meter each,

box i will take up more than half of each dimension of j, and so after i is

put inside j, nothing else can be put inside j.) We say that a box k is visible

in a nesting arrangement if the sequence of operations does not result in

its ever being put inside another box.

Here is the problem faced by the people at WebExodus: Since only the

visible boxes are taking up any space, how should a nesting arrangement

be chosen so as to minimize the number of visible boxes?

Give a polynomial-time algorithm to solve this problem.

Example. Suppose there are three boxes with dimensions (.6, .6, .6),

(.75, .75, .75), and (.9, .7, .7). The first box can be put into either of the

Exercises 435

second or third boxes; but in any nesting arrangement, both the second

and third boxes will be visible. So the minimum possible number of vis-

ible boxes is two, and one solution that achieves this is to nest the first

box inside the second.

32. Given a graph G = (V , E), and a natural number k, we can define a relation
G , k
−→ on pairs of vertices of G as follows. If x, y ∈ V, we say that x

G , k
−→ y if

there exist k mutually edge-disjoint paths from x to y in G.

Is it true that for every G and every k ≥ 0, the relation
G , k
−→ is transitive?

That is, is it always the case that if x
G , k
−→ y and y

G , k
−→ z, thenwe have x

G , k
−→ z?

Give a proof or a counterexample.

33. Let G = (V , E) be a directed graph, and suppose that for each node v, the

number of edges into v is equal to the number of edges out of v. That is,

for all v,

|{(u, v) : (u, v) ∈ E}| = |{(v, w) : (v, w) ∈ E}|.

Let x, y be two nodes of G, and suppose that there exist k mutually edge-

disjoint paths from x to y. Under these conditions, does it follow that

there exist k mutually edge-disjoint paths from y to x? Give a proof or a

counterexample with explanation.

34. Ad hoc networks, made up of low-powered wireless devices, have been

proposed for situations like natural disasters in which the coordinators

of a rescue effort might want to monitor conditions in a hard-to-reach

area. The idea is that a large collection of these wireless devices could be

dropped into such an area from an airplane and then configured into a

functioning network.

Note that we’re talking about (a) relatively inexpensive devices that

are (b) being dropped from an airplane into (c) dangerous territory; and

for the combination of reasons (a), (b), and (c), it becomes necessary to

include provisions for dealing with the failure of a reasonable number of

the nodes.

We’d like it to be the case that if one of the devices v detects that it is in

danger of failing, it should transmit a representation of its current state to

some other device in the network. Each device has a limited transmitting

range—say it can communicate with other devices that lie within d meters

of it. Moreover, since we don’t want it to try transmitting its state to a

device that has already failed, we should include some redundancy: A

device v should have a set of k other devices that it can potentially contact,

each within d meters of it. We’ll call this a back-up set for device v.

436 Chapter 7 Network Flow

(a) Suppose you’re given a set of n wireless devices, with positions

represented by an (x, y) coordinate pair for each. Design an algorithm

that determines whether it is possible to choose a back-up set for

each device (i.e., k other devices, each within d meters), with the

further property that, for some parameter b, no device appears in

the back-up set of more than b other devices. The algorithm should

output the back-up sets themselves, provided they can be found.

(b) The idea that, for each pair of devices v and w, there’s a strict

dichotomy between being “in range” or “out of range” is a simplified

abstraction. More accurately, there’s a power decay function f (·) that

specifies, for a pair of devices at distance δ, the signal strength f (δ)

that they’ll be able to achieve on their wireless connection. (We’ll

assume that f (δ) decreases with increasing δ.)

We might want to build this into our notion of back-up sets as

follows: among the k devices in the back-up set of v, there should

be at least one that can be reached with very high signal strength,

at least one other that can be reached with moderately high signal

strength, and so forth. More concretely, we have values p1 ≥ p2 ≥ . . . ≥

pk, so that if the back-up set for v consists of devices at distances

d1 ≤ d2 ≤ . . . ≤ dk, then we should have f (dj) ≥ pj for each j.

Give an algorithm that determines whether it is possible to

choose a back-up set for each device subject to this more detailed

condition, still requiring that no device should appear in the back-up

set of more than b other devices. Again, the algorithm should output

the back-up sets themselves, provided they can be found.

35. You’re designing an interactive image segmentation tool that works as

follows. You start with the image segmentation setup described in Section

7.10, with n pixels, a set of neighboring pairs, and parameters {ai}, {bi},

and {pij}. We will make two assumptions about this instance. First, we will

suppose that each of the parameters {ai}, {bi}, and {pij} is a nonnegative

integer between 0 and d, for some number d. Second, we will suppose that

the neighbor relation among the pixels has the property that each pixel

is a neighbor of at most four other pixels (so in the resulting graph, there

are at most four edges out of each node).

You first perform an initial segmentation (A0, B0) so as to maximize

the quantity q(A0, B0). Now, this might result in certain pixels being

assigned to the background when the user knows that they ought to be

in the foreground. So, when presented with the segmentation, the user

has the option of mouse-clicking on a particular pixel v1, thereby bringing

it to the foreground. But the tool should not simply bring this pixel into

Exercises 437

the foreground; rather, it should compute a segmentation (A1, B1) that

maximizes the quantity q(A1, B1) subject to the condition that v1 is in the

foreground. (In practice, this is useful for the following kind of operation:

In segmenting a photo of a group of people, perhaps someone is holding

a bag that has been accidentally labeled as part of the background. By

clicking on a single pixel belonging to the bag, and recomputing an

optimal segmentation subject to the new condition, the whole bag will

often become part of the foreground.)

In fact, the system should allow the user to perform a sequence

of such mouse-clicks v1, v2, . . . , vt; and after mouse-click vi, the sys-

tem should produce a segmentation (Ai, Bi) that maximizes the quantity

q(Ai, Bi) subject to the condition that all of v1, v2, . . . , vi are in the fore-

ground.

Give an algorithm that performs these operations so that the initial

segmentation is computedwithin a constant factor of the time for a single

maximum flow, and then the interaction with the user is handled in O(dn)

time per mouse-click.

(Note: Solved Exercise 1 from this chapter is a useful primitive for

doing this. Also, the symmetric operation of forcing a pixel to belong to

the background can be handled by analogous means, but you do not have

to work this out here.)

36. We now consider a different variation of the image segmentation problem

in Section 7.10. We will develop a solution to an image labeling problem,

where the goal is to label each pixel with a rough estimate of its distance

from the camera (rather than the simple foreground/background labeling

used in the text). The possible labels for each pixel will be 0, 1, 2, . . . , M

for some integer M.

Let G = (V , E) denote the graph whose nodes are pixels, and edges

indicate neighboring pairs of pixels. A labeling of the pixels is a partition

of V into sets A0, A1, . . . , AM , where Ak is the set of pixels that is labeled

with distance k for k = 0, . . . , M. We will seek a labeling of minimum cost ;

the cost will come from two types of terms. By analogy with the fore-

ground/background segmentation problem, we will have an assignment

cost : for each pixel i and label k, the cost ai,k is the cost of assigning label

k to pixel i. Next, if two neighboring pixels (i, j) ∈ E are assigned different

labels, there will be a separation cost. In Section 7.10, we used a sepa-

ration penalty pij. In our current problem, the separation cost will also

depend on how far the two pixels are separated; specifically, it will be

proportional to the difference in value between their two labels.

Thus the overall cost q′ of a labeling is defined as follows:

438 Chapter 7 Network Flow

vi,1 vi,2 vi,3 vi,4 vi,5s t

ai,0

L L L L L L

ai,1 ai,2 ai,3 ai,5ai,4

Figure 7.30 The set of nodes corresponding to a single pixel i in Exercise 36 (shown

together with the source s and sink t).

q′(A0, . . . , AM) =

M
∑

k=0

∑

i∈Ai

ai,k +
∑

k<ℓ

∑

(i, j)∈E
i∈Ak , j∈Aℓ

(ℓ − k)pij.

The goal of this problem is to develop a polynomial-time algorithm

that finds the optimal labeling given the graph G and the penalty pa-

rameters ai,k and pij. The algorithm will be based on constructing a flow

network, andwewill start you off on designing the algorithmby providing

a portion of the construction.

The flow network will have a source s and a sink t. In addition, for

each pixel i ∈ V wewill have nodes vi,k in the flow network for k = 1, . . . , M,

as shown in Figure 7.30. (M = 5 in the example in the figure.)

For notational convenience, the nodes vi,0 and vi,M+1 will refer to s

and t, respectively, for any choice of i ∈ V.

We now add edges (vi,k , vi,k+1) with capacity ai,k for k = 0, . . . , M; and

edges (vi,k+1, vi,k) in the opposite direction with very large capacity L. We

will refer to this collection of nodes and edges as the chain associated

with pixel i.

Notice that if we make this very large capacity L large enough, then

there will be no minimum cut (A, B) so that an edge of capacity L leaves

the set A. (How large do we have tomake it for this to happen?). Hence, for

any minimum cut (A, B), and each pixel i, there will be exactly one low-

capacity edge in the chain associated with i that leaves the set A. (You

should check that if there were two such edges, then a large-capacity

edge would also have to leave the set A.)

Finally, here’s the question: Use the nodes and edges defined so far

to complete the construction of a flow network with the property that a

minimum-cost labeling can be efficiently computed from a minimum s-t

cut. You should prove that your construction has the desired property,

and show how to recover the minimum-cost labeling from the cut.

37. In a standard minimum s-t cut problem, we assume that all capacities are

nonnegative; allowing an arbitrary set of positive and negative capacities

results in a problem that is computationally much more difficult. How-

Exercises 439

ever, as we’ll see here, it is possible to relax the nonnegativity requirement

a little and still have a problem that can be solved in polynomial time.

Let G = (V , E) be a directed graph, with source s ∈ V, sink t ∈ V, and

edge capacities {ce}. Suppose that for every edge e that has neither s nor t

as an endpoint, we have ce ≥ 0. Thus ce can be negative for edges e that have

at least one end equal to either s or t. Give a polynomial-time algorithm

to find an s-t cut of minimum value in such a graph. (Despite the new

nonnegativity requirements, we still define the value of an s-t cut (A, B)

to be the sum of the capacities of all edges e for which the tail of e is in

A and the head of e is in B.)

38. You’re working with a large database of employee records. For the pur-

poses of this question, we’ll picture the database as a two-dimensional

table T with a set R of m rows and a set C of n columns; the rows corre-

spond to individual employees, and the columns correspond to different

attributes.

To take a simple example, we may have four columns labeled

name, phone number, start date, manager′s name

and a table with five employees as shown here.

name phone number start date manager’s name

Alanis 3-4563 6/13/95 Chelsea

Chelsea 3-2341 1/20/93 Lou

Elrond 3-2345 12/19/01 Chelsea

Hal 3-9000 1/12/97 Chelsea

Raj 3-3453 7/1/96 Chelsea

Given a subset S of the columns, we can obtain a new, smaller table

by keeping only the entries that involve columns from S. We will call this

new table the projection of T onto S, and denote it by T[S]. For example,

if S = {name, start date}, then the projection T[S] would be the table

consisting of just the first and third columns.

There’s a different operation on tables that is also useful, which is

to permute the columns. Given a permutation p of the columns, we can

obtain a new table of the same size as T by simply reordering the columns

according to p. We will call this new table the permutation of T by p, and

denote it by Tp.

All of this comes into play for your particular application, as follows.

You have k different subsets of the columns S1, S2, . . . , Sk that you’re

440 Chapter 7 Network Flow

going to be working with a lot, so you’d like to have them available in a

readily accessible format. One choice would be to store the k projections

T[S1], T[S2], . . . , T[Sk], but this would take up a lot of space. In considering

alternatives to this, you learn that you may not need to explicitly project

onto each subset, because the underlying database system can deal with

a subset of the columns particularly efficiently if (in some order) the

members of the subset constitute a prefix of the columns in left-to-right

order. So, in our example, the subsets {name, phone number} and {name,

start date, phone number,} constitute prefixes (they’re the first two and

first three columns from the left, respectively); and as such, they can

be processed much more efficiently in this table than a subset such as

{name, start date}, which does not constitute a prefix. (Again, note that

a given subset Si does not come with a specified order, and so we are

interested in whether there is some order under which it forms a prefix

of the columns.)

So here’s the question: Given a parameter ℓ < k, can you find ℓ per-

mutations of the columns p1, p2, . . . , pℓ so that for every one of the given

subsets Si (for i = 1, 2, . . . , k), it’s the case that the columns in Si consti-

tute a prefix of at least one of the permuted tables Tp1
, Tp2

, . . . , Tpℓ
? We’ll

say that such a set of permutations constitutes a valid solution to the

problem; if a valid solution exists, it means you only need to store the

ℓ permuted tables rather than all k projections. Give a polynomial-time

algorithm to solve this problem; for instances on which there is a valid

solution, your algorithm should return an appropriate set of ℓ permuta-

tions.

Example. Suppose the table is as above, the given subsets are

S1 = {name, phone number},

S2 = {name, start date},

S3 = {name, manager′s name, start date},

and ℓ = 2. Then there is a valid solution to the instance, and it could be

achieved by the two permutations

p1 = {name, phone number, start date, manager′s name},

p2 = {name, start date, manager′s name, phone number}.

This way, S1 constitutes a prefix of the permuted table Tp1
, and both S2

and S3 constitute prefixes of the permuted table Tp2
.

39. You are consulting for an environmental statistics firm. They collect

statistics and publish the collected data in a book. The statistics are

about populations of different regions in the world and are recorded in

Exercises 441

multiples of one million. Examples of such statistics would look like the

following table.

Country A B C Total

grown-up men 11.998 9.083 2.919 24.000

grown-up women 12.983 10.872 3.145 27.000

children 1.019 2.045 0.936 4.000

Total 26.000 22.000 7.000 55.000

We will assume here for simplicity that our data is such that all

row and column sums are integers. The Census Rounding Problem is to

round all data to integers without changing any row or column sum. Each

fractional number can be rounded either up or down. For example, a good

rounding for our table data would be as follows.

Country A B C Total

grown-up men 11.000 10.000 3.000 24.000

grown-up women 13.000 10.000 4.000 27.000

children 2.000 2.000 0.000 4.000

Total 26.000 22.000 7.000 55.000

(a) Consider first the special case when all data are between 0 and 1.

So you have a matrix of fractional numbers between 0 and 1, and

your problem is to round each fraction that is between 0 and 1 to

either 0 or 1 without changing the row or column sums. Use a flow

computation to check if the desired rounding is possible.

(b) Consider the Census Rounding Problem as defined above, where row

and column sums are integers, and youwant to round each fractional

number α to either ⌊α⌋ or ⌈α⌉. Use a flow computation to check if the

desired rounding is possible.

(c) Prove that the rounding we are looking for in (a) and (b) always exists.

40. In a lot of numerical computations, we can ask about the “stability”

or “robustness” of the answer. This kind of question can be asked for

combinatorial problems as well; here’s one way of phrasing the question

for the Minimum Spanning Tree Problem.

Suppose you are given a graph G = (V , E), with a cost ce on each edge e.

We view the costs as quantities that have been measured experimentally,

subject to possible errors in measurement. Thus, the minimum spanning

442 Chapter 7 Network Flow

tree one computes for G may not in fact be the “real” minimum spanning

tree.

Given error parameters ε > 0 and k > 0, and a specific edge e′ = (u, v),

you would like to be able to make a claim of the following form.

(∗) Even if the cost of each edge were to be changed by at most ε (either

increased or decreased), and the costs of k of the edges other than e′ were

further changed to arbitrarily different values, the edge e′ would still not belong

to any minimum spanning tree of G.

Such a property provides a type of guarantee that e′ is not likely to belong

to the minimum spanning tree, even assuming significant measurement

error.

Give a polynomial-time algorithm that takesG, e′, ε, and k, and decides

whether or not property (∗) holds for e′.

41. Suppose you’re managing a collection of processors and must schedule

a sequence of jobs over time.

The jobs have the following characteristics. Each job j has an arrival

time aj when it is first available for processing, a length ℓj which indicates

how much processing time it needs, and a deadline dj by which it must

be finished. (We’ll assume 0 < ℓj ≤ dj − aj.) Each job can be run on any

of the processors, but only on one at a time; it can also be preempted

and resumed from where it left off (possibly after a delay) on another

processor.

Moreover, the collection of processors is not entirely static either:

You have an overall pool of k possible processors; but for each processor

i, there is an interval of time [ti, t′i] during which it is available; it is

unavailable at all other times.

Given all this data about job requirements and processor availability,

you’d like to decide whether the jobs can all be completed or not. Give a

polynomial-time algorithm that either produces a schedule completing all

jobs by their deadlines or reports (correctly) that no such schedule exists.

You may assume that all the parameters associated with the problem are

integers.

Example. Suppose we have two jobs J1 and J2. J1 arrives at time 0, is due

at time 4, and has length 3. J2 arrives at time 1, is due at time 3, and has

length 2. We also have two processors P1 and P2. P1 is available between

times 0 and 4; P2 is available between times 2 and 3. In this case, there is

a schedule that gets both jobs done.

. At time 0, we start job J1 on processor P1.

Exercises 443

. At time 1, we preempt J1 to start J2 on P1.

. At time 2, we resume J1 on P2. (J2 continues processing on P1.)

. At time 3, J2 completes by its deadline. P2 ceases to be available, so

we move J1 back to P1 to finish its remaining one unit of processing

there.

. At time 4, J1 completes its processing on P1.

Notice that there is no solution that does not involve preemption and

moving of jobs.

42. Give a polynomial-time algorithm for the following minimization ana-

logue of the Maximum-Flow Problem. You are given a directed graph

G = (V , E), with a source s ∈ V and sink t ∈ V, and numbers (capacities)

ℓ(v, w) for each edge (v, w) ∈ E. We define a flow f , and the value of a flow,

as usual, requiring that all nodes except s and t satisfy flow conserva-

tion. However, the given numbers are lower bounds on edge flow—that

is, they require that f (v, w) ≥ ℓ(v, w) for every edge (v, w) ∈ E, and there is

no upper bound on flow values on edges.

(a) Give a polynomial-time algorithm that finds a feasible flow of mini-

mum possible value.

(b) Prove an analogue of theMax-FlowMin-Cut Theorem for this problem

(i.e., does min-flow = max-cut?).

43. You are trying to solve a circulation problem, but it is not feasible. The

problem has demands, but no capacity limits on the edges. More formally,

there is a graph G = (V , E), and demands dv for each node v (satisfying
∑

v∈V dv = 0), and the problem is to decide if there is a flow f such that

f (e) ≥ 0 and f in(v) − f out(v) = dv for all nodes v ∈ V. Note that this problem

can be solved via the circulation algorithm from Section 7.7 by setting

ce = +∞ for all edges e ∈ E. (Alternately, it is enough to set ce to be an

extremely large number for each edge—say, larger than the total of all

positive demands dv in the graph.)

You want to fix up the graph to make the problem feasible, so it

would be very useful to know why the problem is not feasible as it stands

now. On a closer look, you see that there is a subset U of nodes such that

there is no edge into U , and yet
∑

v∈U dv > 0. You quickly realize that the

existence of such a set immediately implies that the flow cannot exist:

The set U has a positive total demand, and so needs incoming flow, and

yet U has no edges into it. In trying to evaluate how far the problem is

from being solvable, you wonder how big the demand of a set with no

incoming edges can be.

444 Chapter 7 Network Flow

Give a polynomial-time algorithm to find a subset S ⊂ V of nodes such

that there is no edge into S and for which
∑

v∈S dv is as large as possible

subject to this condition.

44. Suppose we are given a directed network G = (V , E) with a root node r and

a set of terminals T ⊆ V. We’d like to disconnect many terminals from r,

while cutting relatively few edges.

We make this trade-off precise as follows. For a set of edges F ⊆ E, let

q(F) denote the number of nodes v ∈ T such that there is no r-v path in

the subgraph (V , E − F). Give a polynomial-time algorithm to find a set F

of edges that maximizes the quantity q(F) − |F |. (Note that setting F equal

to the empty set is an option.)

45. Consider the following definition. We are given a set of n countries that

are engaged in trade with one another. For each country i, we have the

value si of its budget surplus; this number may be positive or negative,

with a negative number indicating a deficit. For each pair of countries i, j,

we have the total value eij of all exports from i to j; this number is always

nonnegative. We say that a subset S of the countries is free-standing if the

sum of the budget surpluses of the countries in S, minus the total value

of all exports from countries in S to countries not in S, is nonnegative.

Give a polynomial-time algorithm that takes this data for a set of

n countries and decides whether it contains a nonempty free-standing

subset that is not equal to the full set.

46. In sociology, one often studies a graph G in which nodes represent people

and edges represent those who are friends with each other. Let’s assume

for purposes of this question that friendship is symmetric, so we can

consider an undirected graph.

Now suppose we want to study this graph G, looking for a “close-knit”

group of people. One way to formalize this notion would be as follows.

For a subset S of nodes, let e(S) denote the number of edges in S—that is,

the number of edges that have both ends in S. We define the cohesiveness

of S as e(S)/|S|. A natural thing to search for would be a set S of people

achieving the maximum cohesiveness.

(a) Give a polynomial-time algorithm that takes a rational number α and

determines whether there exists a set S with cohesiveness at least α.

(b) Give a polynomial-time algorithm to find a set S of nodes with

maximum cohesiveness.

Exercises 445

47. The goal of this problem is to suggest variants of the Preflow-Push

Algorithm that speed up the practical running time without ruining its

worst-case complexity. Recall that the algorithm maintains the invariant

that h(v) ≤ h(w) + 1 for all edges (v, w) in the residual graph of the current

preflow. We proved that if f is a flow (not just a preflow) with this

invariant, then it is a maximum flow. Heights were monotone increasing,

and the running-time analysis depended on bounding the number of

times nodes can increase their heights. Practical experience shows that

the algorithm is almost always much faster than suggested by the worst

case, and that the practical bottleneck of the algorithm is relabeling

nodes (and not the nonsaturating pushes that lead to the worst case in

the theoretical analysis). The goal of the problems below is to decrease

the number of relabelings by increasing heights faster than one by one.

Assume you have a graph G with n nodes, m edges, capacities c, source s,

and sink t.

(a) The Preflow-Push Algorithm, as described in Section 7.4, starts by

setting the flow equal to the capacity ce on all edges e leaving the

source, setting the flow to 0 on all other edges, setting h(s) = n, and

setting h(v) = 0 for all other nodes v ∈ V. Give an O(m) procedure for

initializing node heights that is better than the one we constructed

in Section 7.4. Your method should set the height of each node v to

be as high as possible given the initial flow.

(b) In this part we will add a new step, called gap relabeling, to Preflow-

Push, which will increase the labels of lots of nodes bymore than one

at a time. Consider a preflow f and heights h satisfying the invariant.

A gap in the heights is an integer 0 < h < n so that no node has

height exactly h. Assume h is a gap value, and let A be the set of

nodes v with heights n > h(v) > h. Gap relabeling is the process of

changing the heights of all nodes in A so they are equal to n. Prove

that the Preflow-Push Algorithm with gap relabeling is a valid max-

flow algorithm. Note that the only new thing that you need to prove is

that gap relabeling preserves the invariant above, that h(v) ≤ h(w) + 1

for all edges (v, w) in the residual graph.

(c) In Section 7.4 we proved that h(v) ≤ 2n − 1 throughout the algorithm.

Here we will have a variant that has h(v) ≤ n throughout. The idea is

that we “freeze” all nodes when they get to height n; that is, nodes at

height n are no longer considered active, and hence are not used for

push and relabel. This way, at the end of the algorithm we have a

preflow and height function that satisfies the invariant above, and so

that all excess is at height n. Let B be the set of nodes v so that there

446 Chapter 7 Network Flow

is a path from v to t in the residual graph of the current preflow. Let

A = V−B. Prove that at the end of the algorithm, (A, B) is a minimum-

capacity s-t cut.

(d) The algorithm in part (c) computes aminimum s-t cut but fails to find

a maximum flow (as it ends with a preflow that has excesses). Give

an algorithm that takes the preflow f at the end of the algorithm of

part (c) and converts it into a maximum flow in at most O(mn) time.

(Hint: Consider nodes with excess, and try to send the excess back

to s using only edges that the flow came on.)

48. In Section 7.4 we considered the Preflow-Push Algorithm, and discussed

one particular selection rule for considering vertices. Here we will explore

a different selection rule. We will also consider variants of the algorithm

that terminate early (and find a cut that is close to theminimumpossible).

(a) Let f be any preflow. As f is not necessarily a valid flow, it is possible

that the value f out(s) is much higher than the maximum-flow value in

G. Show, however, that f in(t) is a lower bound on the maximum-flow

value.

(b) Consider a preflow f and a compatible labeling h. Recall that the set

A = {v : There is an s-v path in the residual graph Gf }, and B = V−A

defines an s-t cut for any preflow f that has a compatible labeling h.

Show that the capacity of the cut (A, B) is equal to c(A, B) =
∑

v∈B ef (v).

Combining (a) and (b) allows the algorithm to terminate early and

return (A, B) as an approximately minimum-capacity cut, assuming

c(A, B) − f in(t) is sufficiently small. Next we consider an implementa-

tion that will work on decreasing this value by trying to push flow

out of nodes that have a lot of excess.

(c) The scaling version of the Preflow-Push Algorithm maintains a scal-

ing parameter �. We set � initially to be a large power of 2. The

algorithm at each step selects a node with excess at least � with as

small a height as possible. When no nodes (other than t) have ex-

cess at least �, we divide � by 2, and continue. Note that this is

a valid implementation of the generic Preflow-Push Algorithm. The

algorithm runs in phases. A single phase continues as long as � is

unchanged. Note that � starts out at the largest capacity, and the

algorithm terminates when � = 1. So there are at most O(log C) scal-

ing phases. Show how to implement this variant of the algorithm so

that the running time can be bounded by O(mn + n log C + K) if the

algorithm has K nonsaturating push operations.

Exercises 447

(d) Show that the number of nonsaturating push operations in the above

algorithm is at most O(n2 log C). Recall that O(log C) bounds the num-

ber of scaling phases. To bound the number of nonsaturating push

operations in a single scaling phase, consider the potential function

� =
∑

v∈V h(v)ef (v)/�. What is the effect of a nonsaturating push on

�? Which operation(s) can make � increase?

49. Consider an assignment problem where we have a set of n stations that

can provide service, and there is a set of k requests for service. Say, for

example, that the stations are cell towers and the requests are cell phones.

Each request can be served by a given set of stations. The problem so far

can be represented by a bipartite graph G: one side is the stations, the

other the customers, and there is an edge (x, y) between customer x and

station y if customer x can be served from station y. Assume that each

station can serve at most one customer. Using a max-flow computation,

we can decide whether or not all customers can be served, or can get an

assignment of a subset of customers to stations maximizing the number

of served customers.

Here we consider a version of the problem with an additional compli-

cation: Each customer offers a different amount of money for the service.

Let U be the set of customers, and assume that customer x ∈ U is willing

to pay vx ≥ 0 for being served. Now the goal is to find a subset X ⊂ U max-

imizing
∑

x∈X vx such that there is an assignment of the customers in X

to stations.

Consider the following greedy approach. We process customers in

order of decreasing value (breaking ties arbitrarily). When considering

customer x the algorithm will either “promise” service to x or reject x in

the following greedy fashion. Let X be the set of customers that so far

have been promised service. We add x to the set X if and only if there is

a way to assign X ∪ {x} to servers, and we reject x otherwise. Note that

rejected customers will not be considered later. (This is viewed as an

advantage: If we need to reject a high-paying customer, at least we can tell

him/her early.) However, we do not assign accepted customers to servers

in a greedy fashion: we only fix the assignment after the set of accepted

customers is fixed. Does this greedy approach produce an optimal set of

customers? Prove that it does, or provide a counterexample.

50. Consider the following scheduling problem. There are m machines, each

of which can process jobs, one job at a time. The problem is to assign

jobs to machines (each job needs to be assigned to exactly one machine)

and order the jobs on machines so as to minimize a cost function.

448 Chapter 7 Network Flow

The machines run at different speeds, but jobs are identical in their

processing needs. More formally, each machine i has a parameter ℓi, and

each job requires ℓi time if assigned to machine i.

There are n jobs. Jobs have identical processing needs but different

levels of urgency. For each job j, we are given a cost function cj(t) that

is the cost of completing job j at time t. We assume that the costs are

nonnegative, and monotone in t.

A schedule consists of an assignment of jobs to machines, and on

each machine the schedule gives the order in which the jobs are done.

The job assigned to machine i as the first job will complete at time ℓi,

the second job at time 2ℓi and so on. For a schedule S, let tS(j) denote

the completion time of job j in this schedule. The cost of the schedule is

cost(S) =
∑

j cj(tS(j)).

Give a polynomial-time algorithm to find a schedule ofminimumcost.

51. Some friends of yours have grown tired of the game “Six Degrees of Kevin

Bacon” (after all, they ask, isn’t it just breadth-first search?) and decide to

invent a game with a little more punch, algorithmically speaking. Here’s

how it works.

You start with a set X of n actresses and a set Y of n actors, and two

players P0 and P1. Player P0 names an actress x1 ∈ X, player P1 names an

actor y1who has appeared in amovie with x1, player P0 names an actress x2

whohas appeared in amovie with y1, and so on. Thus, P0 and P1 collectively

generate a sequence x1, y1, x2, y2, . . . such that each actor/actress in the

sequence has costarred with the actress/actor immediately preceding. A

player Pi (i = 0, 1) loses when it is Pi’s turn to move, and he/she cannot

name a member of his/her set who hasn’t been named before.

Suppose you are given a specific pair of such sets X and Y , with

complete information onwhohas appeared in amoviewithwhom.A strat-

egy for Pi, in our setting, is an algorithm that takes a current sequence

x1, y1, x2, y2, . . . and generates a legal next move for Pi (assuming it’s Pi’s

turn to move). Give a polynomial-time algorithm that decides which of

the two players can force a win, in a particular instance of this game.

Notes and Further Reading

Network flow emerged as a cohesive subject through the work of Ford and

Fulkerson (1962). It is now a field of research in itself, and one can easily

Notes and Further Reading 449

devote an entire course to the topic; see, for example, the survey by Goldberg,

Tardos, and Tarjan (1990) and the book by Ahuja, Magnanti, and Orlin (1993).

Schrijver (2002) provides an interesting historical account of the early

work by Ford and Fulkerson on the flow problem. Lending further support

to those of us who always felt that the Minimum-Cut Problem had a slightly

destructive overtone, this survey cites a recently declassified U.S. Air Force

report to show that in the original motivating application for minimum cuts,

the network was a map of rail lines in the Soviet Union, and the goal was to

disrupt transportation through it.

As we mention in the text, the formulations of the Bipartite Matching

and Disjoint Paths Problems predate the Maximum-Flow Problem by several

decades; it was through the development of network flows that these were all

placed on a common methodological footing. The rich structure of matchings

in bipartite graphs has many independent discoverers; P. Hall (1935) and

König (1916) are perhaps the most frequently cited. The problem of finding

edge-disjoint paths from a source to a sink is equivalent to the Maximum-

Flow Problem with all capacities equal to 1; this special case was solved (in

essentially equivalent form) by Menger (1927).

The Preflow-Push Maximum-Flow Algorithm is due to Goldberg (1986),

and its efficient implementation is due to Goldberg and Tarjan (1986). High-

performance code for this and other network flow algorithms can be found at

a Web site maintained by Andrew Goldberg.

The algorithm for image segmentation using minimum cuts is due to

Greig, Porteous, and Seheult (1989), and the use of minimum cuts has be-

come an active theme in computer vision research (see, e.g., Veksler (1999)

and Kolmogorov and Zabih (2004) for overviews); we will discuss some fur-

ther extensions of this approach in Chapter 12. Wayne (2001) presents further

results on baseball elimination and credits Alan Hoffman with initially popu-

larizing this example in the 1960s. Many further applications of network flows

and cuts are discussed in the book by Ahuja, Magnanti, and Orlin (1993).

The problem of finding a minimum-cost perfect matching is a special case

of the Minimum-Cost Flow Problem, which is beyond the scope of our coverage

here. There are a number of equivalent ways to state the Minimum-Cost Flow

Problem; in one formulation, we are given a flow network with both capacities

ce and costs Ce on the edges; the cost of a flow f is equal to the sum of the edge

costs weighted by the amount of flow they carry,
∑

e Cef (e), and the goal is

to produce a maximum flow of minimum total cost. The Minimum-Cost Flow

Problem can be solved in polynomial time, and it too has many applications;

450 Chapter 7 Network Flow

Cook et al. (1998) and Ahuja, Magnanti, and Orlin (1993) discuss algorithms

for this problem.

While network flow models routing problems that can be reduced to the

task of constructing a number of paths from a single source to a single sink,

there is a more general, and harder, class of routing problems in which paths

must be simultaneously constructed between different pairs of senders and

receivers. The relationship among these classes of problems is a bit subtle;

we discuss this issue, as well as algorithms for some of these harder types of

routing problems, in Chapter 11.

Notes on the Exercises Exercise 8 is based on a problem we learned from Bob

Bland; Exercise 16 is based on discussions with Udi Manber; Exercise 25 is

based on discussions with Jordan Erenrich; Exercise 35 is based on discussions

with Yuri Boykov, Olga Veksler, and Ramin Zabih; Exercise 36 is based on

results of Hiroshi Ishikawa and Davi Geiger, and of Boykov, Veksler, and Zabih;

Exercise 38 is based on a problem we learned from Al Demers; and Exercise 46

is based on a result of J. Picard and H. Ratliff.

